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Abstract 

 
Risk management is crucial to financial institutions. It aims to minimize the potential loss or maximize 

the possible gain from unusual events. Extreme value theory (EVT) is commonly applied to analyze the 

extreme behavior in financial markets. In this paper, we use EVT to investigate the volatility of the 

exchange rates between the U.S. dollar and the Euro and Great British Pound, respectively. The peak over 

threshold (POT) method from EVT uses the result that exceedances over a predetermined threshold 

follow the generalized Pareto distribution (GPD). A major contribution of this paper is that we use a 

Bayesian approach to directly estimate the threshold as well as the GPD parameters. Specifically, Markov 

Chain Monte Carlo (MCMC) simulation with Metropolis-Hastings sampling is used to model the tail 

distributions of our exchange rate data. The two risk measures, value at risk (VaR) and expected shortfall 

(ES), are constructed based on the Bayesian estimation results. They both indicate that trading the British 

pound is less risky than trading the Euro. By comparing our method with the traditional two-step EVT 

approach, which determines the threshold graphically, we conclude that our method is superior. Also, 

some sensitivity tests show that the choice of prior distributions for the threshold parameter and the 

different starting value for MCMC analysis have little impact on the results. 
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1. Introduction. 

The management of risk is crucial to financial institutions. It aims to minimize the potential loss or 

maximize the possible gain from unusual events. After the financial crisis in 2008, the new Basel III 

Accord (2010) raised the capital requirement to strengthen the risk resistance capacity. It requires bank 

and financial institutions to set aside a minimum of capital as risk control to cover predicted losses from 

daily portfolio trading. Thus, those institutions are interested in the tail behavior—extreme events—of 

their portfolios. The extreme value theory (EVT) is commonly used to estimate the extreme distribution 

of financial time series.  

De Dieu et al. (2014) indicate that EVT is a well-developed and significant theory in explaining 

sample extreme and it provides the opportunity to study tail distributions to predict losses from sudden 

crashes, which is important to financial institutions. It can help financial institutions to accurately reserve 

the minimum amount of capital required to cover the maximum losses that will occur with low 

probabilities. Haile and Pozo (2006) note that EVT is an appropriate and useful approach to investigate 

and analyze statistical modeling with extreme and unusual cases, and EVT need not only be applied in the 

financial field, but also can be adopted and applied to other fields that deal with risk management and 

unusual variations in data. Gilli and Këllezi (2006) discuss the use of two risk measures, Value at Risk 

(VaR) and Expected Shortfall (ES) under the Generalized Pareto Distribution (GDP), and estimate the tail 

behavior of stock indices using EVT. They suggest that EVT is a well-founded method to build up the 

model and determine the distribution of risk or unusual events.  

The VaR is interpreted as the maximum value of the loss or gain of a portfolio given a pre-assigned 

very small probability over a certain period, and the ES as the expected value of the loss or gain that 

exceeds the VaR. Fretheim and Kristiansen (2015) point out that the benefit of using EVT is that 

investigators can focus only on the tail of the series, and EVT tolerates non-normality, which allows for 

skewed data that may also exhibit excess kurtosis. De Jesus et al. (2013) investigate the Mexican peso 

and U.S. dollar exchange rate, and they find that the EVT is a useful methodology which can identify the 

distribution of the extreme values of such data. In addition, Iglesias (2012) investigates the extreme 

movements of exchanges rates for several major currencies. 
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Since EVT is a commonly selected method to apply in risk management in the financial field, it is a 

good opportunity for financial institutions to apply the method and analyze its results in trading portfolio 

selection. In this paper, we apply the EVT to compare the risk behavior of two major currencies, the Euro 

and Great British Pound (against the U.S. dollar), to determine which of the two is less volatile—in other 

words, which currency is less risky to invest in. The two risk measures, VaR and ES are calculated to 

indicate the potential loss or gain for exchange returns under in extreme situations. 

McNeil an d Frey (2000) explore a method of combining GARCH modeling and EVT with 

maximum likelihood estimation to investigate the volatility of financial return series over a short period 

of time. They suggest a two-step EVT method which can capture two main characteristics of financial 

data: the fat-tailed distribution and the volatility clustering. However, the crucial part of the modelling 

procedure, namely the choice of the threshold itself, is based on two graphs which are difficult to interpret 

in practice. This graphical approach to determining the location of the extreme region of the data is 

standard in the vast majority of the literature on EVT. It remains a weakness of much of the associated 

empirical literature. 

In contrast, Behrens et al. (2004) suggest an alternative method which involves estimating the 

threshold (that marks the start of the extreme range in the data) directly, using a Bayesian approach. The 

Markov Chain Monte Carlo (MCMC) simulation with Metropolis-Hastings sampling is introduced to 

model the tail distribution of financial time series. Following their ideas, we apply a modified Bayesian 

approach to evaluate the risk associated with daily changes in exchange rate data. Details of the model are 

discussed in the following section. We also apply the two-step EVT method based on Maximum 

Likelihood estimation for comparison purpose.    

The remainder of this paper is structured as follows: Section 2 introduces the background of the 

extreme value theory as well as the Bayesian analysis. Section 3 provides a detailed description of our 

methodology. Section 4 discusses the properties of the daily returns for the exchange rates and provides 

descriptive statistics as well as some preliminary tests. Section 5 summarizes our findings, and also 

presents a comparison of results from different methods. Section 6 discusses the sensitivity tests that we 

have conducted. Section 7 concludes the paper, and offers some suggestions for future research. 
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2.  Background 

2.1  Extreme Value Theory 

In preparation for the potential loss during the extreme events, financial institutions are interested in 

estimating the tail distribution of the returns for an investment portfolio. Three large families of 

estimation methods are commonly applied: the nonparametric simulation approach, the parametric 

ARCH/GARCH estimation, and the method based on extreme value theory (EVT). However, each of 

those three techniques has drawbacks. It is well-known that to estimate extreme situations beyond the 

historical data period is difficult; and the extreme value approach within the sample period is inefficient. 

The estimator from the simulation approach, based on empirical data, has high variance. As for the 

ARCH/GARCH approach, the assumption that the data are normally distributed is not likely to hold for 

financial time series, which usually have fatter tails than normal data. The extreme value theory is 

designed to describe the asymptotic distribution—especially the tail part—of a random variable under 

unusual situations. Although this method provides a parametric estimation of the tail distribution, it 

cannot capture the stochastic volatility commonly exhibited by financial data. 

To overcome these shortfalls, McNeil and Frey (2000) suggest a two-step EVT method that 

combines the ideas of all three approaches. They first apply a GARCH filter to the data, and then 

historical simulation and EVT are used to estimate the distribution of the residuals. McNeil and Frey 

(2000) state that their approach captures the two main properties of financial return series: the stochastic 

volatility and the fat-tailed distribution. The estimation of the tail distribution is based on a predetermined 

threshold which is chosen graphically. However, the associated plots are often hard to interpret. Thus, the 

choice of the threshold is arbitrary. Nonetheless, the basic ideas of modeling extreme events with EVT 

and the GARCH filter for financial data are adopted in this paper.  

 

2.2  Block Maxima vs. Peak Over Threshold 

There are two methodologies that are commonly used in EVT to model and estimate the distributions 

of extrema: the block maxima method, and the peak over threshold (POT) approach. Relying on the 
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Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943), the block maxima method 

uses the result that the extreme values for an i.i.d. random variable must follow one of the Generalized 

Extreme Value (GEV) distributions. The data are divided into several equal length blocks and the extreme 

values within each block are used to fit one of the Fréchet, Gumbel, or Weibull distributions. In contrast, 

the POT method studies the data values beyond a predetermined high threshold value, u. It can be shown 

that, if the threshold u is large enough, the exceedances above u will follow the Generalized Pareto 

distribution (GPD) (Pinkands, 1975; Balkema and de Haan, 1974).  

Many studies in the literature (e.g., Ren and Giles, 2010; Chen and Giles, 2016) indicate that there is 

a major drawback with the block maxima method. Instead of the whole data set, it only considers the 

maximum values in each blocks, which may lead the estimation to be less efficient due to the different 

features in each block. In particular, some blocks might have smaller maximum values than others. The 

distribution estimation would be biased when the data contains those outliers. To avoid such undesirable 

situations, we have chosen to apply the POT approach, because it takes all of the individual sample values 

in the tail distribution into account. In addition, the POT approach has been used quite widely and 

successfully in analyzing other high frequency financial time series. 

 

2.3  The Generalized Pareto Distribution. 

The POT approach uses the fact that the data “exceedances” above a sufficiently high threshold 

follow the GPD. The three-parameter GPD density function for a random variable, X, is: 

                    , ,
1 1 ξ 	ξ 0

1 exp 			 	ξ 0

                  (2.1) 

where ξ and β are the shape and scale parameters, while as noted before, u is the predetermined threshold. 

It is effectively the location parameter for the distribution. The shape parameter determines the form of 

the tail of the distribution. If ξ > 0, the distribution has a fat tail compared with the Normal distribution. 

Gilli and Këllezi (2006) point out that this situation is likely to apply to “returns” data for financial assets. 

A negative value of ξ implies that the distribution has a thinner tail than the Normal distribution. If ξ = 0, 

the tail of the distribution dies down exponentially (McNeil and Frey 2000).  
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The choice of the threshold is crucial. It determines the sample of “exceedances” that are then used 

to estimate the shape and scale parameters of the underlying distribution, so it also affects the 

corresponding estimates of VaR and ES because these are functions of these parameters. As the result, 

different choices of the threshold can influence decisions relating to risk capital reserves. Moreover, 

implied by the EVT, the exceedances would only converge to the GPD if the threshold is large enough. 

Thus, to ensure the accuracy of the estimation, it is important to choose a proper threshold. Choosing the 

threshold too low will result in a distribution that is not generalized Pareto, and the parameter estimates 

will be beiased. However, a very high threshold will result in very few exceedances. The small number of 

observations will then result in high estimation variance. The choice of the threshold is a trade-off 

between the bias and the variance of the parameter estimator (Gilli and Këllezi, 2006; Ren and Giles, 

2010).  

In general, the threshold is determined using the assistance of the Mean Excess (ME) plot, and the 

so-called parameter plot. The ME function is defined as the expected value of the exceedances over a 

certain threshold. For an underlying GPD, the (theoretical) ME function is linear, and upward-sloping. 

Thus, the threshold is selected where the (empirical) ME graph starts to exhibit this linearity. The 

parameter plot illustrates the stability of the estimated shape and scale parameters under the different 

choice of the threshold. The two GPD parameters should be stable above a certain high threshold, as the 

exceedances should approach the GPD asymptotically. Thus, the threshold would be chosen where the 

two parameters begin to vary noticeably.  

Behrens et al. (2004) argue that although the POT method considers the full information above the 

threshold, the data below the threshold are still ignored. In addition, it is difficult to interpret the ME and 

parameter plots in practice. A more effective method of choosing the threshold is required.  

 

2.4  Bayesian Estimation of the Threshold. 

Behrens et al. (2004) propose an alternative way to determine the value of the threshold. Instead of 

locating the threshold with the help of two graphs, they treat the threshold as an unknown parameter of 

the underlying parametric model. Therefore, its value can be estimated directly. More specifically, the 
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whole data set is fitted to a designated distribution, which (in their case) combines the gamma distribution 

below the threshold and the GPD afterward. They construct the prior distributions for each parameter in 

the model, and the Markov Chain Monte Carlo (MCMC) method with Metropolis-Hastings sampling is 

used to draw the posterior inferences.  

Based on this general approach, we apply a modified model to estimate the threshold on the 

exchange return data. Instead of the gamma distribution which is used by Behrens et al., we assume that 

the data are normally distributed below the threshold. That is, a truncated normal distribution is used. The 

full details of the model are discussed in later sections of this paper. 

 

2.5  Estimation of VaR and ES 

It will be recalled that the VaR measures the potential loss or gain for a portfolio under some extreme 

event. Santamaría et al. (2016) point out that the estimation methods for VaR would achieve their best 

performances at the high quantiles, such as the 99th percentile. So, we calculate the VaR at the 1% 

probability level over a one-day period. Mathematically, the VaR can be obtained by inverting the tail 

estimator of an underlying distribution given a probability level p. The tail estimator of the GPD is given 

as follows (McNeil and Frey, 2000): 

                      1 1 ξ       ,                 (2.2) 

where Nu is the number of observations above a given threshold, u, and n is the total number of 

observations in the original sample of data. By inverting the tail estimator for a given probability level p, 

we obtain the estimator for the VaR as: 

                          1      .                 (2.3) 

ES provides the information above the VaR. In particular, it reports the conditional expected value above 

the VaR given a probability level p. The ES is defined as: 

                            |       .                    (2.4) 

Equation (2.4) can be expressed as: 

                     |                     (2.5) 

The |  term in equation (2.5) is defined as the mean excess function of 
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exceedances beyond the threshold: VaRp. From Ren and Giles (2010), and Chen and Giles (2016), the 

mean excess for an underlying GPD is: 

                                           .                   (2.6) 

From the Pickands-Balkema-de Haan results, if the value of threshold is large enough, the mean excess 

function can be constructed on the basis of equation (2.6) replacing the threshold with (VaRp – u). (Ren 

and Giles, 2010; Chen and Giles, 2016): 

ξ
1 ξ

 

Substituting this expression into equation (2.5), the formula for ES can be written as: 

                                                   (2.7) 

Simplifying equation (2.7), we obtain the estimator of the expected shortfall as: 

                                                            (2.8) 

By substituting the proper threshold u and the estimated shape and scale parameters for the GPD into 

the equation (2.3) and (2.8), we can acquire point estimates of the risk measurements: VaR and ES.  

Interval estimators for the VaR and the ES are also reported in a handful of papers (Ren and Giles, 

2010, and Chen and Giles 2016). These estimators are formed by applying the delta method (Oehlert, 

1992) to approximate the asymptotic variances of those risk measurements. However, the delta method 

requires the information about the covariance matrix of the GPD parameter estimators, and this is not 

readily available from our Bayesian analysis. Thus, at this stage we report only point estimates of the VaR 

and the ES below.  

 

3.  Methodology 

3.1  Model 

Recall from the last section that a modified version of Behrens et al. (2004) method is applied in this 

paper. The distribution for our data combines the (truncated) normal distribution and the GPD. We have a 

random variable X, which is assumed to be normally distributed with the distribution function H (x | μ, s2) 

below the threshold, u. Let h (x | μ, s2) denote the corresponding density function. On the other hand, the 
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exceedances above the threshold follow the GPD, denoted as G (x | ξ, , u). Hence, the distribution 

function for X can be constructed as the following mixture: 

   | , , , ,
| , 																																				

| , 1 | , | , ,
     (3.1) 

where μ and s2 are the population mean and the variance below the threshold. The 1 is an indicator 

function which takes the value of 1 when X is within the pre-specified range, and 0 elsewhere. From 

equation (3.1) above it is obvious that the threshold, u, is the discrete transition point between two 

distributions. Behrens et al. (2004) argue that the estimation for the threshold would be more difficult if 

the transition between the distributions is modelled as being a smooth one.  

Assuming independent sampling, the corresponding likelihood function can be written as: 

| , , , ,
∏ | , ∏ 1 | , ,, 1,

∏ | , ∏ 1 | , ,, exp	, 							
  

(3.2) 

3.2  Parameter Priors 

There are five parameters in the likelihood function, namely the mean, , and the variance, , 

from the Normal distribution, the GPD shape,  and scale,  parameters, and the threshold . Instead 

of setting up a prior for each parameter, we consider prior distributions only for the GPD parameters and 

the threshold, u. Values are assigned directly to the parameters for the distribution below the threshold, in 

order to simplify matters. This part of the analysis is being extended in work currently in progress. In the 

current analysis the mean of the Normal distribution below the threshold is set to a suitably high quantile 

of the data. From the results of some sensitivity testing, we have found that the choice of the mean and the 

variance from the truncated Normal distribution has very little impact on the estimation of the threshold  

itself. 

As for the GPD parameters, we use Jeffreys’ “invariant” prior which is derived for this distribution 

by Castellanos and Cabras (2007). It is constructed from the information matrix for the shape and the 

scale parameters. Specifically, it takes the form: 

                  , ∝ 1 1 2 , 0.5, 0  .         (3.3) 
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There are several ways to model the prior distribution of the threshold. Following the steps of 

Behrens et al. (2004), we assume that the prior distribution of the threshold, u, is a truncated normal 

distribution:  

                         | , , ∝
	

        ,           (3.4) 

where t is the truncation point. The  and  are the mean and the variance of the normal distribution 

of the threshold. As suggested by Behrens et al. (2004), the value of  is assigned using the 75th 

percentile of the data. Choosing a relatively large value for  ensures that the prior distribution is 

relatively flat. In our case, after conducting a sensitivity test, different choices of the  and  are 

found to have low impact on the Bayes estimate of the threshold. Bermudez et al. (2001) propose an 

alternative method to describe the threshold. Instead of setting the prior with respect to u, they construct a 

discrete prior for the upper order statistics of the data. The threshold is determined indirectly based on the 

values of the order statistics. In our own study we consider two possible prior distributions for the 

threshold, and discuss the possible impact of the choice of the prior on the threshold estimate as well as 

the estimates of the risk measures in the later sections of this paper. 

 

3.3  Posterior distribution 

By combining the likelihood function (3.2) and the priors of the parameters (3.3), and (3.4), we 

obtain the posterior distribution function in logarithmic form as follows: 

log | , , , ,

log

1
2

log 1
1
2

1 erf
√2

log

1
	

log 1 log log 1

1
2
log 1 2

1
2

 

                                                                                (3.5) 
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where C is a constant term, and erf ( . ) is the so-called error function. The MCMC method with 

Metropolis-Hastings sampling is applied to evaluate the posterior distribution using the R package 

MHadaptive (Chivers, 2015). Starting values of each parameter are required by the simulation process. 

The starting value of the threshold is chosen first third quartile of the sample. Once the hyper-threshold is 

determined,  and  are calculated as the mean and the variance of the data before the 

hyper-threshold. As for the GPD parameters, the starting values are based on the Maximum Likelihood 

estimates given the starting value of the threshold. The results are detailed in the later sections. 

 

4. Data Characteristics 

4.1  Overview 

In this paper we focus on the daily “returns” for two exchange rates: EUR/USD, and GBP/USD. By 

considering the potential structural change during the 2008 financial crisis, we restrict our analysis to the 

period from 2nd January 2009 to 13th November 2015 to avoid the possible impact of the recession on the 

exchange market. The exchange rates are retrieved from the PACIFIC Exchange Rate Service, provided 

by Antweiler (2015). Daily returns are obtained by taking the log-difference of the official noon spot 

rates. 

 

 

Table 1. Descriptive Statistics 

EUR/USD GBP/USD 

Mean 0.013346 -0.002342 

Median 0.004056 -0.000766 

Maximum 2.677503 3.468275 

Minimum -4.606501 -4.301831 

Std. Dev. 0.658011 0.584191 

Observations 1970 1970 

Note: All statistics are in %. 

 

Table 1 provides the descriptive statistics of the data. The mean and the median of the return series 

are essentially zero. Comparing the two exchange returns, the Euro returns are more variable than the 
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British pound’s returns, having a larger range and standard deviation. This may suggest that trading the 

Euro dollar is riskier than trading the Great British Pound. Thus, we might anticipate that larger VaR and 

ES values may be associated with the EUR/USD returns than with the GBP/USD returns. We return to 

this pint later. There are 1,970 observations in total for each time-series. 

 

 

 

 
Figures 1 and 2 depict the daily returns for the EUR/USD and GBP/USD returns respectively. From 
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these graphs, the relatively higher volatility at the beginning of 2009 may suggest the possible presence of 

conditional heteroskedasticity within the samples. However, the results that we obtain after the GARCH 

filtering, discussed by McNeil and Frey (2000), are almost identical to those based on the original data 

series. This indicates that the GARCH effect is not significant in our samples. Nevertheless, we use the 

data after the GARCH filtering for the rest of this paper. 

 

4.2  Preliminary tests 

The normality and the stationarity of the sample data are examined through the Jarque–Bera (J-B) 

test and the Augmented Dickey-Fuller (ADF) test, with no drift and no trend. The test results are shown in 

Table 2. The (essentially) zero p-value of the J-B test clearly leads us to reject the null hypothesis that the 

data series are normally distributed. Further, the positive excess kurtosis confirms our previous 

expectation about the fat tail property of the financial time series. The two daily returns series are 

stationary in their levels based on the ADF test results. 

 

Table 2. Preliminary Test Results 

EUR/USD Returns GBP/USD Returns 

Normality Test 

Skewness -0.131233 -0.05131 

Excess Kurtosis 2.129536 3.218265 

J-B Test 377.8962 851.0206 

(p-value) (0.0000) (0.0000) 

Stationarity Test 

ADF -44.52135 -43.8718 

(p-value) (0.0001) (0.0001) 

 

 Due to the asymmetry and non-negative properties of the GPD, we separated the data into two parts: 

the positive returns and the absolute value of the negative returns. For the daily returns of the EUR/USD, 

there are 969 positive returns and 1,001 negative returns. On the other hand, the GBP/USD sample 

contains 976 positive returns and 994 negative returns. For more intuitive results, the daily returns are 

scaled by a factor of 100. 
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Quantile-quantile (Q-Q) plots were used to examine whether the actual data distribution is consistent 

with the theoretical distribution which we selected. In particular, the first part of the data should follow 

the Normal distribution but truncated at the threshold. The R package, truncgof, developed by Wolter 

(2015), facilitates the construction of these plots for truncated data. However, the package is available 

only for left truncated data, which is the opposite of our right truncated samples. Thus, we modified the 

data sets by recording the negative value first, then fitting against the theoretical distributions. As a result, 

the left end of the Q-Q plot actually relates to the right tail of the empirical data distribution, and vice 

versa.    

Figure 3 compares each daily returns series with the theoretical truncated normal distribution (with 

estimated mean and variance). From this we can conclude that all of the samples exhibit the same 

property. The empirical data are mostly consistent with the theoretical distributions from the left end 

(right side) of the graph (actual data). However, the plots deviate away from the 45° line and curve up to 

the right. This might suggest that the actual daily returns come from a different distribution family than 

the truncated normal, which is inconsistent with our assumption.  

 

 

Figure 3: Quantile-Quantile Plot (Truncated Normal) 

EUR/USD Positive EUR/USD Negative 

  

 

 

 

 



15 

 

GBP/USD Positive GBP/USD Negative 

  

 

However, in addition to analyzing the preceding distribution graphically, formal hypothesis tests are 

also performed. Chernobai et al. (2005) have developed the proper method to construct the appropriate 

test statistics for traditional goodness-to-fit tests, such as the Kuiper test and the Cramér-von Mises test in 

the context of truncated data sets. Based on their work we apply both tests to the exchange returns. Table 

3 presents the test statistics and the corresponding p-values of the two goodness-of-fit tests. At the 5% 

significance level, we cannot reject the null hypothesis that the empirical exchange returns are consistent 

with the theoretical truncated normal distribution, using at least one of the tests. In other words, the test 

results provide reasonable support for the assumption of a (truncated) normal distribution for the data 

below the threshold.  

 

Table 3. Goodness-of-Fit Tests 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Kuiper 5.5519 5.5895 5.8893 5.6384 

(p-value) (0.06) (0.02) (0.06) (0.06) 

     

Cramér-von Mises 3.1513 2.028 1.8116 2.0571 

(p-value) (0.08) (0.08) (0.02) (0.02) 
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5.  Results 

5.1  Threshold and Parameters Estimation 

As we have seen already, an accurate threshold is a prerequisite for constructing the risk 

measurements. The ME plot and the parameter plot are adopted to find the most fitted threshold in the 

traditional method. As mentioned in the previous section, the mean excess function of the GPD is linear 

with a positive slope if the data follow the GPD. Ideally, the threshold is chosen where the ME plot is 

positive sloping while the parameter plot begins to become unstable. From Figure 4, the ME plot of the 

EUR/USD negative returns is downward sloping at the beginning, but starts to fluctuate and become 

positive sloping. However, it is difficult to locate the turning point. This exposes the major drawback of 

the traditional method. Further, the parameter plot only provides an approximate range for the threshold 

values. A truly reliable point “estimate” of the threshold cannot be obtained directly from these plots. 

 

 

Figure 4: ME Plot and Parameter Plot of EUR/USD Negative Returns 

  

 

In contrast, the Bayesian approach that we use can overcome such problems. The threshold is treated 

as an unknown parameter in the model, and is estimated directly, together with the other parameters. In 

particular, equation (3.5) is applied to describe the posterior distribution. Inferences are drawn via MCMC 

with Metropolis-Hastings sampling.  
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Figure 5: Marginal Posterior Densities (GBP/USD Negative Returns) 
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The marginal posterior densities for the case of the GBP/USD negative returns are shown in Figure 5 

by way of illustration, and these are fully representative of their counterparts for the other data-sets. Table 

4 summarizes the Bayes estimates for the GPD parameters and the corresponding 95% credible intervals. 

The point estimates are the means of the marginal posterior densities, so we are using a quadratic loss 

function.  

 

  

The thresholds of the EUR/USD exchange rate are around 0.9 for both positive and negative returns. 

The GBP/USD returns have the lower thresholds which are slightly lower. Recall that from the 

fundamental theory of the POT method, the threshold should be sufficiently large enough to ensure the 

asymptotic distribution of the extreme values is GPD. Meanwhile, care must be taken to select a threshold 

value which provides enough observations above it to keep the variance of the parameter estimators from 

becoming too high. From Table 4, the number of observations above the thresholds is between 125 and 

145, which is around 12.5% to 14% of the total sample size. While this may raise concerns about 

estimation bias when applying the POT method, Ren and Giles (2010) suggest that treating no more than 

20% of the population as exceedances is reasonable in practice. All of the shape parameter estimates are 

positive for the two currencies, except for the EUR/USD positive returns. As is discussed in section 2.2, 

the underlying distribution has a fat tail if the shape parameter is greater than zero, otherwise the 

distribution has the thinner tail than the normal distribution. The negative shape parameter of EUR/USD 

Table 4. Bayes Estimates 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Threshold (u) 

(C.I) 

0.9949 

(0.9129 1.0516) 

0.9039 

(0.8234 0.9891) 

0.8412 

(0.7785 0.9212) 

0.8878 

(0.8705 0.9022) 

No. above 131 142 132 125 

Scale (β) 

(C.I) 

0.4286 

(0.313 0.5553) 

0.3722 

(0.2933 0.4577) 

0.2875 

(0.2271 0.3644) 

    0.2253 

(0.1090 0.3264) 

Shape (ξ) 

(C.I) 

-0.1301 

(-0.2736 0.0551) 

0.0962 

(-0.0350 0.2685) 

0.1555 

(-0.0137 0.3029) 

0.1473 

(0.0201 0.2699) 

Notes: C.I stands for the 95% credible interval; all results are simulated using a burn-in of 1,000 iterations 

and 50,000 further iterations.  
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positive returns suggests that the underlying distribution does not exhibit fat tails. This conflicts with the 

usual fat tail characteristic of financial time series data, and may require further investigation.  

Figure 6 shows the trace plots for the Markov chains associated with the marginal posterior densities 

for the various GPD parameters, and exhibit good “mixing”. For both EUR/USD positive and negative 

returns, the estimates of the thresholds as well as the shape and scale parameters are centered around the 

posterior mean and are stable within the 95% credible interval. For the GBP/USD positive returns, the 

traces of the estimated parameters deviate at the beginning of the simulations. However, the estimates 

tend to be stable around the mean after about 1,000 iterations. The trace of the estimated threshold for the 

GBP/USD negative returns suggests that the estimates of the thresholds seem to contain more outliers 

than other samples. But for the most part of estimates are stable within the 95% credible interval. 

 

Figure 6: Trace Plots for Markov Chains 

 

EUR/USD GBP/USD 

Positive Returns Negative Returns Positive Returns Negative Returns 
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Figure 7: Quantile-Quantile Plots (GPD) 

EUR/USD Positive EUR/USD Negative 

  

GBP/USD Positive GBP/USD Negative 

  

 

Figure 7 presents the Q-Q plots for the tail distributions (horizontal) of each returns series against the 

theoretical GPD (vertical). The theoretical distribution is determined by the threshold and the estimated 

shape parameters through the R package ‘evir’ (Pfaff, McNeil and Stephenson, 2015). Although there are 

departures from the 45° line at the right ends of each returns distribution, the major part of the data fits 

the theoretical GPD well. The right ends of the plots are where the outliers are located, and it is not 

unusual that the outliers do not fit the corresponding distribution. Recalling the negative shape parameter 

of the EUR/USD positive returns, it is inconsistent with the fat tail assumption of the financial data and 
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brings the concern about the reliability of the POT method under such a situation. However, the Q-Q plot 

of these returns indicates that the GPD models the exceedances quite well. This, lends credence to the 

estimation results associated with the EUR/USD positive returns data. Compared with other three 

exchange returns, the GBP/USD negative returns exhibit the most variation from the theoretical GPD. 

This explains why the trace of the threshold estimates of the GBP/USD negative returns are less stable 

than the others to some extent. Overall, the GPD is supported well by these results as a description of the 

tail distributions of our daily returns.  

For comparison, we also used the graphical method to locate the threshold and the two-step EVT 

method, suggested by McNeil and Frey (2000), to estimate the GPD parameters via maximum likelihood 

(ML). Chen and Giles (2016) point out that, for the graphical method, the determinants of the thresholds 

should not be based only on the ME and the parameter plots, but one should also consider the significance 

of ML estimates as well as the Akaike’s Information Criterion (AIC) value. Thus, the thresholds are 

chosen to minimize the AIC value and the asymptotic standard errors of the corresponding ML estimates. 

The results are shown in Table 5. Conditional on the selected thresholds, these estimates can be viewed a 

Bayes estimates based on a diffuse (non-informative) prior for the other parameters in the model. 

  

Note: “a.s.e.” denotes “asymptotic standard error”. 

 

The graphical method generates higher thresholds and hence smaller effective sample sizes than does 

the Bayesian methodology. Both the scale and shape parameter estimates are different in Tables 4 and 5. 

Table 5. Maximum Likelihood Estimates (two-step EVT) 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Threshold (u) 1.30 1.20 1.02 1.25 

AIC -11.8085 13.5972 3.2327 -11.3623 

No. above 63 70 72 41 

Scale (β) 

(a.s.e.) 

0.3761 

(0.0642) 

0.3284 

(0.0604) 

0.3005 

(0.0585) 

0.2033 

(0.0516) 

Shape (ξ) 

(a.s.e.) 

-0.1731 

(0.0875) 

0.1821 

(0.1416) 

0.1971 

(0.1569) 

0.4059 

(0.2102) 
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The ML estimate of the shape parameter for the EUR/USD positive returns is still negative, again 

providing evidence that the tail distribution for EUR/USD positive returns has a thinner tail than the 

normal distribution. Although Giles, Feng, and Godwin (2016) find that the maximum likelihood 

estimation is still valid with a negative shape parameter, the unexpected negativity suggests that further 

research and analysis is required. 

 

5.2  Risk Measures Estimation 

The point estimates of our two risk measures are obtained using the functions in (2.3) and (2.8). VaR 

and ES are calculated based on the Bayes estimates of the thresholds as well as the GPD parameters, 

summarized in Table 4. VaR and ES are both calculated under a 1% probability that the event will happen. 

These estimates are presented in Table 6. 

  

Table 6. Risk Measures (Using Bayes Estimates) 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Threshold 0.9949 0.9039 0.8412 0.8878 

VaR 1.9415 2.0285 1.7645 1.7327 

ES 2.2118 2.5601 2.2750 2.2016 

Note: For VaR and ES, the numbers are in percentages. 

 

For the EUR/USD positive returns, with 1% probability, the daily gain from trade will exceed 1.9415% 

and if this gain is exceeded the expected value of this gain is 2.2118%. That is, there is a 1% probability 

that a currency holder will make $19,415 profit or more in one day with a $1million investment. If this 

happens, the expected value for such a gain is $22,118. For the EUR/USD negative returns, there exists a 

1% probability that the daily loss will exceed 2.0385%. The expected value of such loss (of this amount 

or greater) is 2.56601%. This implies that with $1million investment, there is a 1% chance that a trader 

will suffer a loss of $20,385 or more in one day. If this happens, then the expected value of such loss is 

$25,601. 

Compared with the EUR/USD returns, the GBP/USD returns exhibit extreme risk, with smaller VaR 
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as ES estimates, for the most part. For positive returns, there is a 1% chance that the Pound can yield gain 

of 1.7645% or more overnight. If this occurs, the expected gain is 2.2750%, which is better than the 

extreme positive returns for the Euro. On the other hand, there is a 1% chance of a potential loss when 

trading the Great British Pound of 1.7327% or more for one trading day. If this occurs, the expected loss 

is 2.2016%. 

Again, for comparison purposes, we also apply the two-step EVT methods to compute the risk 

measures. The estimators of the VaR and ES are the same, but they are based on the ML estimates of the 

GPD parameters. We used the R package “POT” (Ribatet, 2006) to obtain the ME and parameter charts, 

as well as the maximum likelihood estimates. The results appear in Table 7. Interestingly, the risk 

measures are similar to the previous results, despite the relatively large differences between the threshold 

values that are used here, and the corresponding Bayes estimates, and the differences in the estimates of 

the GPD parameters under the two different approaches. 

 

Table 7. Risk Measures (Using Maximum Likelihood Estimates) 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Threshold 1.30 1.20 1.02 1.25 

VaR 1.9152 1.9664 1.7560 1.6394 

ES 2.1640 2.5383 2.3109 2.2476 

Note: For VaR and ES, the numbers are in percentages, and calculated at 1% probability. 

 

Both risk measures, obtained with the different estimation methods, confirm that the Great British 

Pound appears to show less variation than does the Euro under both positive and negative extremes. From 

studying the thick tail of the distribution, the results show that the Great British pound has the smallest 

risk relative to all the foreign currencies studied. So, we can confirm that the Great British pound is less 

risky than the Euro. This is also consistent with the previous analysis of the descriptive statistics of two 

returns series.   
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6.  Sensitivity Tests 

Other than the truncated normal prior, we also consider a diffuse prior for u to study the possible 

influence on the estimates of the threshold of different choices of the prior distributions. These sensitivity 

test results are presented in the Table 8. Compared with the previous estimates in Table 4, there are minor 

changes in the estimated values of each parameter. Further, the number of exceedances above the 

thresholds is identical in both tables. Therefore, we can conclude that the different choice of the prior 

distributions for the threshold has insignificant impact on the estimation of the threshold as well as the 

GPD parameters. The risk measures are also similar to the previous results. On the other hand, the trace 

plots of the estimated threshold of the GBP/USD negative returns still exhibit the more volatility than 

those for other three data sets. Further, under the different specification of the posterior distribution, the 

GBP/USD negative return data do not fit with the theoretical GPD particularly well, as was the case 

previously. This might suggest that the unfavourable estimation results come from the data’s own 

characteristics, rather than from the choice of prior density.   

 

Table 8. Sensitivity Tests Results 

 EUR/USD Returns GBP/USD Returns 

 Positive Negative Positive Negative 

Threshold (u) 

(C.I) 

0.9989 

(0.9194 , 1.0518) 

0.9052 

(0.8259 , 0.9885) 

0.8414 

(0.7778 , 0.9341) 

0.8873 

(0.8359 , 0.9031) 

No. above 131 142 132 125 

Scale (β) 

(C.I) 

0.4243 

(0.3140 , 0.5478) 

0.3715 

(0.2956 , 0.4577) 

0.2916 

(0.2290 , 0.3685) 

0.2758 

(0.2214 , 0.3482) 

Shape (ξ) 

(C.I) 

-0.1253 

(-0.2723 , 0.0662) 

0.0976 

(-0.0343 , 0.2735) 

0.1498 

(-0.0259 , 0.2985) 

0.1505 

(0.0217 , 0.2754) 

VaR 1.9418 2.0298 1.7704 1.7373 

ES 2.2139 2.5631 2.2771 2.2126 

Notes: C.I stands for the 95% credible interval; all results are simulated using a burn-in of 1,0000 iterations 

and 50,000 further iterations. for VaR and ES, the numbers are in percentages, and calculated at 1% 

probability. 
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Table 9. Sensitivity Tests for EUR/USD Positive Returns 

Starting Values Estimates 

μu 
 u β ξ u β ξ VaR ES 

0.36 0.26 0.99 0.3 -0.13 0.9917 

(0.9159 , 1.0505) 

0.4296 

(0.3219 , 0.5479) 

-0.1320 

(-0.2696 , 0.0555) 1.9385 2.2076 

0.40 0.30 1.00 0.43 -0.10 0.9949 

(0.9129 , 1.0516) 

0.4286 

(0.3131 , 0.5553) 

-0.1301 

(-0.2736 , 0.0550) 1.9415 2.2118 

0.42 0.32 1.30 0.38 -0.15 1.0177 

(0.9139 , 1.2924) 

0.4034 

(0.2177 , 0.5457) 

-0.1135 

(0.1761 , -0.2704) 1.9202 2.1905 

Notes: 95% credible intervals are reported in parentheses; all results are simulated using a burn-in of 1,000 iterations and 50,000 

further iterations; for VaR and ES, the numbers are in percentages, and calculated at 1% probability. 

 

The MCMC simulations require a starting value for each parameter of the posterior distribution. 

Possibly, changing in the starting values might change the final estimates as well. To study this possibility, 

we conduct the simulations under various combinations of the initial parameters’ values using the 

criterion discussed in section 3.3. We find that the different staring values have very little impact on the 

estimation results, as long as the hyper-threshold values are chosen as a high quantile of the data. To 

conserve space, we present only the sensitivity test results for the EUR/USD positive returns, which 

appear in Table 9. Other results are also available upon request. 

 

7.  Conclusions 

In order to account for systematic risk, large financial institutions are interested in the tail 

behavior—extreme events—for portfolios. Extreme value theory (EVT) is commonly applied to study the 

extreme distributions of financial time series. In this paper, we apply the peak over threshold (POT) 

method from the EVT to investigate the volatility of the exchange returns for two major reserve 

currencies: the Euro and the Great British Pound. The POT method is based on the results that data under 

the extreme situation (as defined by a predetermined threshold) follow a Generalized Pareto Distribution 

(GPD). Motivated by the analysis of Behrens et al. (2004), we conduct a modified Bayesian approach to 

estimate the threshold as well as the shape and the scale parameters of the GPD. Markov Chain Monte 

Carlo simulation with the Metropolis-Hastings sampling method is used to draw the posterior inferences. 

Then, two risk measures - Value at Risk and Expected Shortfall are estimated based on the corresponding 
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GPD. From the estimation results, we conclude that the daily returns for the Euro are more volatile than 

those for the Pound. In other words, the Euro is riskier than the Pound (in each case priced in U.S. 

dollars). This implies that for those who want to make a (relatively) safe investment, trading the Great 

British Pound is preferable to trading the Euro.  

Further, compared with the traditional two-step peaks-over-threshold method, introduced by McNeil 

and Frey (1999), we find that the Bayesian approach is superior. The two-step procedure locates the 

threshold that determines extreme data graphically. However, the associated plots are often hard to 

interpret, and the resulting inferences can be unreliable. In contrast, the Bayesian approach treats the 

threshold as an unknown parameter and it is estimated simultaneously with the other parameters of the 

underlying model. Despite of the difference in the threshold choices and the estimates of the shape and 

scale parameters for the GPD, our approach generates the risk measures that are very similar to those 

obtained via the two-step EVT/POT approach. Some limited sensitivity testing indicates that the different 

choice of the prior distribution for the threshold has little impact on the Bayesian estimation results.  

Although the results of our Bayesian analysis are extremely encouraging, further work remains to be 

done in relation to our empirical application. For example, alternative distributions for the data below the 

threshold values need to be considered. The treatment of the parameters associated with these 

distributions should to be generalized through the introduction of a prior distribution with additional 

hyper-parameters. Finally, there is the potential to perform a Bayesian analysis of the extreme behavior of 

both currencies jointly, using the bivariate generalized Pareto distribution. This last extension of our work 

is the most challenging as Bayesian analyses of the GPD to date have been limited to the univariate case. 

However, it would seem to be a fruitful line of research, given the success of non-Bayesian bivariate GPD 

studies using financial data (e.g., Chen et al., 2012). 
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