Safety Performance of Bicycle Infrastructure in Canada

Dr. Jeannette Montufar, P. Eng, PTOE, RSP1

Founding Partner & CEO
MORR Transportation Consulting
Winnipeg, MB

Outline

- Background and need
- Project objectives
- Approach and methodology
- Key findings
- Facility selection flowchart
- Gap analysis
- Conclusions

Background and Need

- Bicycling is a sustainable and energy efficient transport mode promotes personal and environmental health
- For many years governments across North America have been working to increase bicycling to improve sustainability
- New infrastructure has been implemented without necessarily evaluating its performance
- In Canada there is recognition that a lack of knowledge exists regarding the safety performance of bicycle facilities
- This understanding is important for implementation of new infrastructure

Project Objectives

- 1. Identify methods to quantify observed and perceived performance of different types of bicycle infrastructure.
- 2. Identify data requirements to undertake evaluations.
- 3. Identify principal types of bicycle infrastructure projects that have been undertaken in different contexts in Canada.
- 4. Document and quantify the outcomes of different types of installations in Canada.
- 5. Develop a method for considering risks within the decision-making process for facility/treatment selection.

Approach and Methodology

- 1. Literature review
- 2. End user survey of cyclists across Canada
- 3. Jurisdictional survey
- 4. Case studies of Canadian and international bicycle facilities
- 5. Canadian academic community engagement
- 6. Facility selection flowchart development
- 7. Gap analysis

Key Findings

Bicycle Infrastructure Considered - Segments

Off-Road Bicycle Pathway

Buffered Bicycle Lane

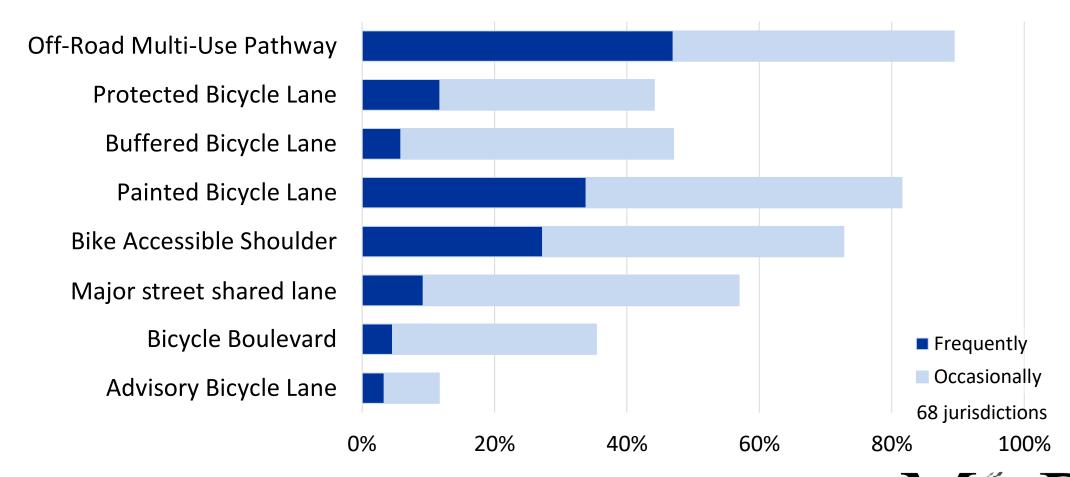
Major Street Shared Lane

Off-Road Multi-Use Pathway

Painted Bicycle Lane

Bicycle Boulevards or Neighbourhood Greenways

Protected Bicycle Lane or Cycle Tracks


Bicycle Accessible Shoulder

Advisory Bike Lanes

Bicycle Facilities Implemented in Canada

Bicycle Infrastructure Considered - Intersections

Protected Intersection

Intersection
Crossing Markings

Bend-Out Intersection Approach

Bike Box

Cross-Rides

Protected Signal Phases

Two-Stage Turn
Queue Box

Bend-In Intersection Approach

Gates, Fencing and Bollards

Safety Performance of Bicycle Facilities

Facility Type	Collision Risk	Collision Severity	Perceived Safety

Facility Type	Collision Risk	Collision Severity	Perceived Safety

- well-supportedpositive safetyoutcome
- general positive safety outcome general negative safety outcome
- Blank cells indicate limited research available

Safety Performance of Bicycle Facilities

Facility Type	Collision Risk	Collision Severity	Perceived Safety
Off-road bicycle facility		0	
Off-road multi-use path			
Protected bicycle lane (one-way)			
Protected bicycle lane (two-way)	0		

- well-supportedpositive safetyoutcome
- general positive safety outcome general negative
- safety outcome

Blank cells indicate limited research available

Safety Performance of Bicycle Facilities

Facility Type	Collision Risk	Collision Severity	Perceived Safety
Off-road bicycle facility		0	
Off-road multi-use path		0	
Protected bicycle lane (one-way)			
Protected bicycle lane (two-way)	0		

Facility Type	Collision Risk	Collision Severity	Perceived Safety
Buffered bicycle lane			
Painted bicycle lane	0	0	0
Major street shared lane			
Bicycle boulevard	0	0	

- well-supportedpositive safetyoutcome
- general positive safety outcomegeneral negativesafety outcome
- Blank cells indicate limited research available

Safety Performance of Bicycle Intersection Treatments

Facility Type	Collision Risk	Collision Severity	Perceived Safety	Facility Type	Collision Risk	Collision Severity	Perceived Safety
Protected intersection		0		Cross-ride	0		
Bike box	•		0	Bend-in, bend-out approach			
Two stage turn Queue box	0		0	Protected signal phase	0		
Intersection crossing markings	0 🗖		0	Gate, fencing, and bollards			

- well-supportedpositive safetyoutcome
- general positive safety outcome
 general negative
 safety outcome
- Blank cells indicate

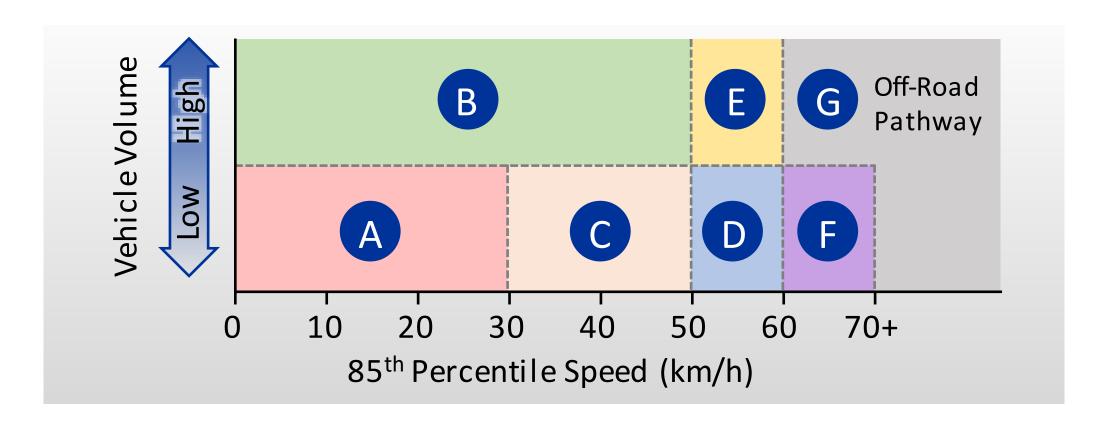
limited research available

Safety Performance Based on End Users

- General safety perception of facility types (safest to least safe)
 - Separated facilities (off road paths and protected bicycle lanes)
 - Lower classification streets (local streets) with or without facilities
 - Higher volume streets with continuous facilities (separated or not)
 - Higher classification streets with intermittent or no facility
- Bicycle boulevards and buffered bicycle lanes perceived safer than painted bicycle lanes
- Fearless and concerned bicyclists disagree on bi-directional protected lanes
- Major street shared lanes considered least safe of facilities

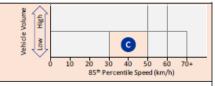
Safety Performance Based on End Users

- Protected signal phases are perceived to be the safest followed by protected intersections.
- Fearless cyclists perceive one-way bicycle facilities to be safer than two-way bicycle facilities at intersections.
- Concerned bicyclists perceive the opposite, that two-way bicycle facilities are safer than one-way bicycle facilities at intersections.
- Bend-out approaches are perceived to be safer by concerned bicyclists than fearless and confident bicyclists.
- Bike boxes and two-stage left turn queues are perceived to be equally safe by concerned bicyclists
- Gates perceived as the least safe intersection treatment


Factors Affecting Observed & Perceived Safety

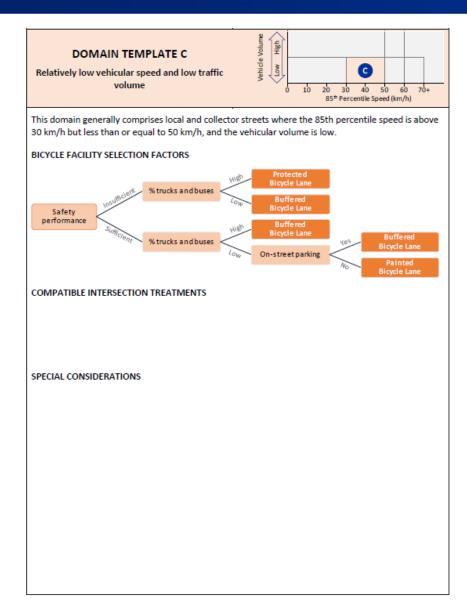
- Vehicle speed
- Vehicular traffic volume
- Frequency of collisions
- Presence of trucks and buses
- Presence of vehicle parking
- Frequency of approaches
- Bicycle volume
- Others (number of lanes, curb type, roadway width, grade, lighting)

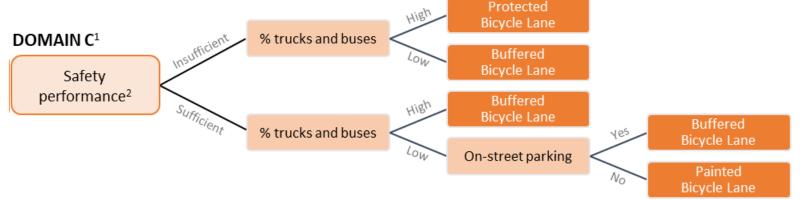
Facility Selection Flowchart


Speed-Volume Envelope

Relatively low vehicular speed and low traffic volume

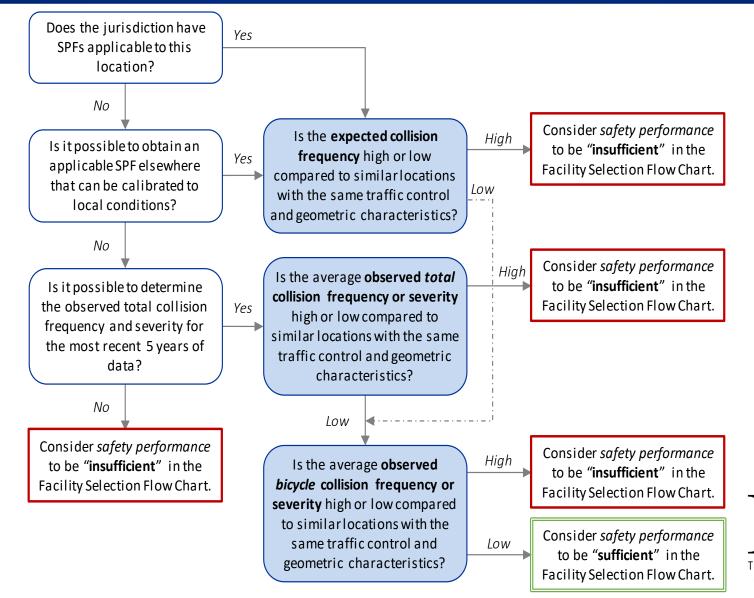
This domain generally comprises local and collector streets where the 85th percentile speed is above 30 km/h but less than or equal to 50 km/h, and the vehicular volume is low.

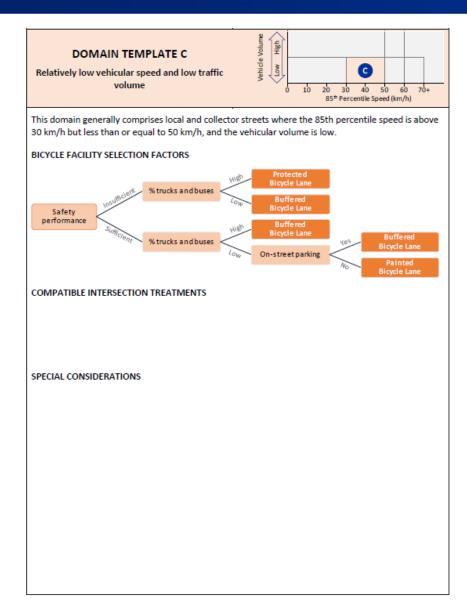

BICYCLE FACILITY SELECTION FACTORS

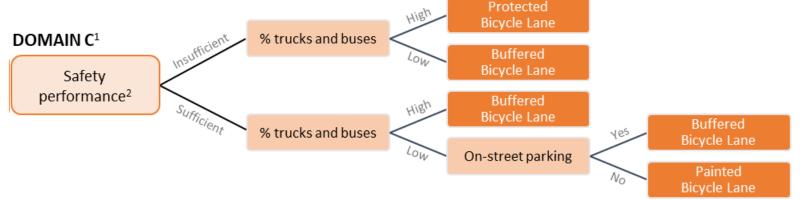

COMPATIBLE INTERSECTION TREATMENTS

SPECIAL CONSIDERATIONS

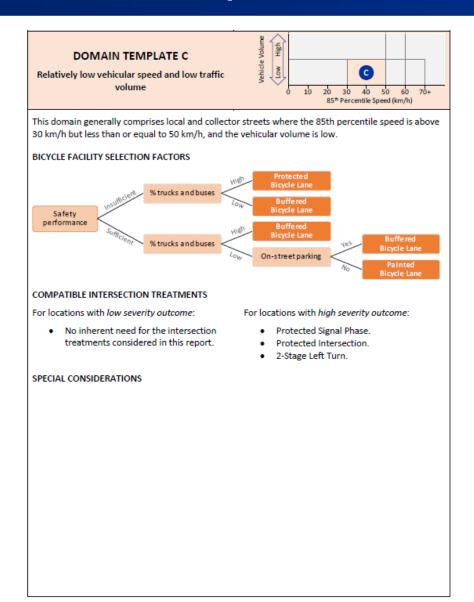
- Description of Domain
- Bicycle facility selection factors
- Compatible intersection treatments
- Special considerations

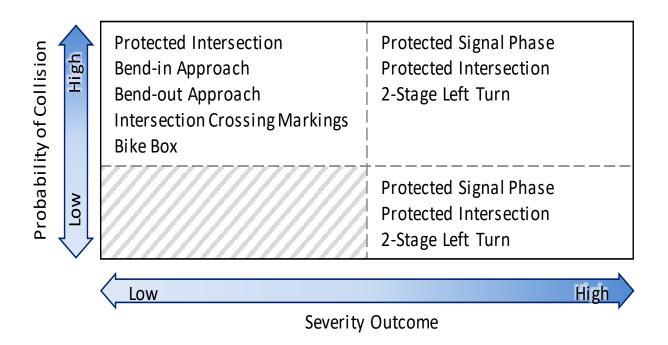


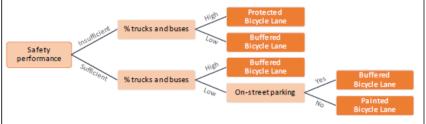




Safety Performance Evaluation Tool







This domain generally comprises local and collector streets where the 85th percentile speed is above 30 km/h but less than or equal to 50 km/h, and the vehicular volume is low.

BICYCLE FACILITY SELECTION FACTORS

COMPATIBLE INTERSECTION TREATMENTS

For locations with low severity outcome:

 No inherent need for the intersection treatments considered in this report. For locations with high severity outcome:

- Protected Signal Phase.
- Protected Intersection.
- 2-Stage Left Turn.

SPECIAL CONSIDERATIONS

- If cycling volume is high, consider a protected bicycle lane in place of a buffered lane to physically channelize bicyclist s.
- 2. Assess potential conflicts with on-street parking availability.
- Assess access frequency and available sightlines. This is particularly important if parking is between the travel lane and the bike facility.
- Assess truck and bus volume, particularly regarding low speed off-tracking (turning maneuvers).
- Assess conflicts between pedestrians and bicyclists at intersections.
- 6. Ensure access for people with disabilities is provided, where needed.
- 7. Assess the need for NO RIGHT TURN ON RED at signalized intersections
- 8. Assess street lighting for continuous and uniform illumination supply.
- On two-way streets, one-way bicycle facilities on both sides of the street are safer than a single two-way facility on only one side of the street, particularly crossing intersections.

- If cycling volume is high, consider a protected bicycle lane in place of a buffered lane to physically channelize bicyclists.
- Assess potential conflicts with on-street parking availability.
- Assess access frequency and available sightlines. This is particularly important if parking is between the travel lane and the bike facility.
- Assess truck and bus volume, particularly regarding low speed off-tracking (turning maneuvers).
- Assess conflicts between pedestrians and cyclists at intersections.
- Ensure access for people with disabilities is provided, where needed.
- Assess the need for NO RIGHT TURN ON RED at signalized intersections.
- Assess street lighting for continuous and uniform illumination supply.
- On two-way streets, one-way bicycle facilities on both sides of the street are safer than a single two-way facility on only one side of the street, particularly crossing intersections.

Gap Analysis

Data gaps

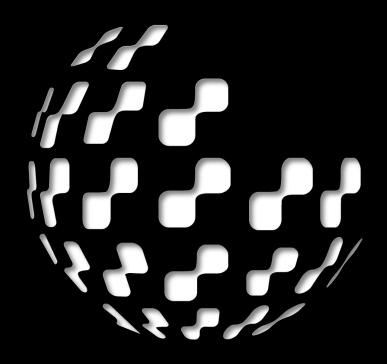
Knowledge gaps

Data gaps

- Collision and other surrogate safety data
- Bicycle and pedestrian volume data
- Vehicular traffic by vehicle type

Data gaps

- Collision and other surrogate safety data
- Bicycle and pedestrian volume data
- Vehicular traffic by vehicle type


Knowledge gaps

- Safety performance by facility type including seasonality
- Safety impact of different parameters (traffic volume, % trucks, frequency of access points)
- Thresholds at which safety is impacted

Conclusions

- Bicycling continues to grow in many Canadian jurisdictions and more infrastructure is being implemented to accommodate users
- Limited robust understanding about the safety performance of bicycle infrastructure types.
- Additional research is needed on the safety performance of intersection treatments.
- There are extensive data and knowledge gaps associated with the safety performance of bicycle infrastructure in Canada
- Much work is needed to close the identified knowledge gaps (traffic volume, % truck/bus, and access density thresholds at which bicycle facilities perform differently).

Dr. Jeannette Montufar, P.Eng. Jeannette.Montufar@morrconsulting.com

Morrconsulting.com

