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Summary

The correct design of experimental studies, the selec-

tion of the appropriate statistical analysis of data and

the efficient presentation of results are key to the good

conduct and communication of science. The last

Guidance for the use and presentation of statistics in

Weed Research was published in 1988. Since then,

there have been developments in both the scope of

research covered by the journal and in the statistical

techniques available. This paper addresses the changes

in statistics and provides a reference work that will

aid researchers in the design and analysis of their

work. It will also provide guidance for editors and

reviewers. The paper is organised into sections, which

will aid the selection of relevant paragraphs, as we

recognise that particular approaches require particular

statistical analysis. It also uses examples, questions

and checklists, so that non-specialists can work

towards the correct approach. Statistics can be com-

plex, so knowing when to seek specialist advice is

important. The structure and layout of this contribu-

tion should help weed scientists, but it cannot provide

a comprehensive guide to every technique. Therefore,

we provide references to further reading. We would

like to reinforce the idea that statistical methods are

not a set of recipes whose mindless application is

required by convention; each experiment or study may

involve subtleties that these guidelines cannot cover.

Nevertheless, we anticipate that this paper will help

weed scientists in their initial designs for research, in

the analysis of data and in the presentation of results

for publication.
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Introduction: philosophy and limitations
of statistics

Statistical methods are used to assist scientists in inter-

preting data, which are, by the very nature of biological

systems, variable. For this reason, the use of statistics has

become an indispensable part of the process of research.

On the one hand, this is critical because the use of

inappropriate methods can lead to misinterpretation of

results and faulty conclusions. On the other hand,

surveys of biological and agricultural journals in the

past have shown that up to 70% of articles either use, or

report, statistics incorrectly (Johnson & Berger, 1982).

More recently, similar, although less dramatic, results

have been reported for journals in the medical field

(Clayton, 2007). It is clear that meeting high standards

should be required in all research and publication efforts

and statistical analyses should be regarded as a part of

the research itself and treated with the same rigour as

experimental methods.
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Within the scope of Weed Research, statistical anal-

yses should help to communicate to the reader the

meaning of experimental results and should neither

distract from the biological explanation, nor make the

text turgid and difficult to follow, or tables and figures

less easy to interpret. Statistical accuracy does not

necessarily imply complexity and difficulty. On the

contrary: excessively complex analyses may indicate

that the experiment was poorly conceived at the outset,

the objectives were poorly defined or the researcher tried

to fit too many things into one experiment.

The present contribution is meant to improve and

standardise the level of statistical information reported

throughout Weed Research. This document stems from

the guidance previously published in this Journal

(Anonymous, 1988) and tries to pursue a slightly

broader aim. In detail, Design and statistical input

section deals with the correct design of experiments

and shows how the decisions taken at this stage should

always be reflected in the selection of statistical methods.

Appropriate use of traditional techniques: ANOVA and

regression section takes into consideration the �tradi-
tional� methods of ANOVA and regression, highlighting

some issues that need to be appropriately accounted for,

when using these widespread techniques. Even though

ANOVA and regression have played an important role in

weed science for a long time, several relatively new

techniques may be more effectively used in some

common experimental situations, which are listed in

When do we need to go beyond traditional ANOVA and

regression section. Several response variables: multivar-

iate statistics section considers multivariate techniques,

which may be very useful in the case of multivariate

�entities�, such as weed flora. Presenting the data section

is more practical and it is meant to guide authors to the

presentation of statistics in Weed Research, through a

list of statements that partly summarise the concepts

already exposed in the previous sections.

We do not expect that all authors are willing to read

this whole document, before submitting a paper toWeed

Research. Therefore, wherever possible, we have

attempted to make each section and subsection relatively

independent from one another, so that authors and

editors may easily select and read only the most relevant

parts, according to their needs.

Design and statistical input

The experimental design dictates the inferences that can

be reliably drawn from an experiment. A proper design

is thus a requirement, not only for field and glasshouse

experiments, but for all kinds of studies: it has been

clearly shown that also experiments in highly controlled

environmental conditions are subject to random vari-

ability (Measures et al., 1973). Furthermore, the deci-

sions taken at the design stage should be reflected in the

selection of statistical methods.

Authors and editors should carefully consider the

following main questions:

1. Are the experimental units clearly defined?

2. Is any form of pseudoreplication clearly distinguished

from true replication?

3. Has randomisation been applied correctly?

4. Is the presence of controls appropriately accounted

for in the analysis?

5. Are structured treatments and ⁄or relationships

between factors appropriately recognised?

6. Are blocking units appropriately accounted for dur-

ing data analysis?

7. Are successive measurements (in space or time) taken

on independent experimental units? If not, has a

mixed model approach been used to account for serial

correlation?

8. Is the experiment independently repeated in space or

time?

If you are in doubt about some answers, this may be

a warning message: some appropriate action needs to be

taken during data analysis. The following parts of this

section may serve as guidance to ensure that the

experiment has been correctly designed and statistical

methods to analyse the data clearly follow from that

design.

Experimental units, replicates, pseudoreplicates and

randomisation

The experimental unit is the smallest unit to which the

process to allocate the treatment in randomised order is

applied. For example, if a pot of five plants is sprayed

with an herbicide, the experimental unit is the pot and

not each of the five plants. Experimental units should be

independently chosen, otherwise any casual event influ-

encing one of them will also influence all the others,

making the �treatment effect� indistinguishable from

�background noise�.
Experiments may need replicates. In this case, it is

important to recognise the difference between a true

replicate and a pseudoreplicate. We can talk about true

replicates when the randomisation process to allocate

the treatment is applied to several independent experi-

mental units. This must be clearly distinguished from

pseudoreplication (sub-sampling), where several mea-

surements are taken on a single sample and thus they are

not independent, because they share the same �sample�.
Some typical examples would be: (i) spraying a pot with

five plants (as above) and measuring separately the

weight of each plant, (ii) treating one soil sample with
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one herbicide and making four measurements of con-

centration on four subsamples of the same soil, (iii)

collecting one soil sample from a field plot and repeating

four times the same chemical analysis. In all the above

cases, the treatments are applied only to one unit (pot or

soil sample) and there are no true replicates, no matter

how often the unit is sub-sampled.

Pseudoreplication should never be mistaken for true

replication, even in the case of laboratory experiments

(Morrison & Morris, 2000). Pseudoreplication is not in

itself a mistake, but authors and editors should always

make sure that the lack of true replicates is appropriate

to the experiment (see e.g Plant, 2007). In all cases,

psedoreplication requires the adoption of appropriate

methods of analysis. The main problem is that sub-

sampled units will not be independent from one another,

which violates one of the basic assumptions for the use

of traditional statistical methods (ANOVA or regression).

Readers are referred to Pseudoreplication and other

grouped data section for suggestions on how to deal with

this issue.

Another basic aspect of experimental design relates to

randomisation, which justifies the use of a model with

independent errors and avoids biased estimates of effect

sizes. Authors should make sure that randomisation is

performed correctly in any kind of experiments, includ-

ing controlled environment studies. However, many

classical designs (randomised complete blocks, split-

plot, etc.) constrain the complete randomisation of the

experiment, which is not a problem, as long as

constraints are taken into account in the analysis,

including the proper terms (blocks, rows, columns,

etc.) in the ANOVA or other models used for analysis.

Relationships between factors

All sources of variation that have been included in the

design and affect the measured variable of interest are

called factors. With this term, in this paper, we will refer

both to quantitative and qualitative explanatory vari-

ables. To study their effect, factors should be allowed to

vary. Each value is a level of the factor. Generally,

treatments take the role of the levels of factors, although

sometimes they refer to the factors themselves.

If the experiment has only one factor, its levels may

be unrelated or they may have some internal structure

(e.g. a set of increasing doses of herbicides); if reasons

were strong enough to introduce such a structure, it is

necessary to avoid (or at least justify) the use of any

statistical methods that would ignore it (such as multiple

comparison testing).

If the experiment has more than one factor, the

relationships between them should be clearly stated in

Materials and methods and data should be analysed

accordingly. Typically, in a crossed factorial design, all

the combinations between levels of factors are included

in the experiment. In this layout, factors may interact

and such an interaction should be taken into account in

data analysis and interpretation of results. By contrast,

a factor B is nested within another factor A (called main

factor) if each level of B is represented in only one level

of the main factor. If reasons were strong enough to

introduce either a factorial or a nested design, it would

not be appropriate to disregard these relationships

during data analysis.

Type of effects

Factors are classified into fixed or random. The levels of

a fixed factor represent either (i) all possible levels for

that factor or (ii) the only levels of specific interest,

about which inference is to be made. The levels of a

random factor can be seen as randomly selected from a

wider population of possible levels. By convention, an

effect is taken as random if any of the factors involved is

random. The process of data analysis should always

account for the random or fixed nature of the different

factors and, if the experimental design includes both

types of effects, a mixed model approach should be

followed. Some examples of factors that are often

regarded as random are: environments (years, locations,

glasshouses and growth chambers), blocks, plots, Petri

dishes and subjects (experimental units) in general.

Statistical textbooks can be consulted to check if effects

are fixed or random (e.g. Maxwell and Delaney, 1990).

Controls

The decision to include a control in the experimental

design should be justified through the objectives of the

experiment, in the same way as any other treatment. In

this case, authors may wish to formally compare the

control with all the other treatments and thus they will

include the control also in the process of data analysis.

This is a correct practice, because it provides more

degrees of freedom for the estimation of error variance;

in the case of factorial designs, some extra modelling

may be necessary to separate controls from the other

treatments (Piepho et al., 2006).

When including a control in the analysis, it is very

important to make sure that variances are homoge-

neous. Indeed, the control may often show a very high

(or very low) variance with respect to all the other

treatments, which may lead to biased results, lower

efficiency or the unnecessary adoption of a stabilising

transformation (Ahrens et al., 1990; Phelps, 1991). In

this case, the control should preferably be erased from

data analysis and, if the ranges of data clearly do not
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overlap, it may be acceptable to conclude that control

and treatments differ, without a formal test of signifi-

cance. A more advanced solution may be to fit a mixed

model with heterogeneous variances between control

and treatments.

Blocking units

Blocking techniques are often used to control the

contribution of nuisance factors to error variability.

Several forms of blocking have been available for a long

time (complete blocks, Latin square, incomplete blocks,

rows and columns; see e.g Cochran & Cox, 1957; John &

Williams, 1995). If some of those forms of blocking are

introduced into the experiment, this should be clearly

mentioned and justified. In the case of a split-plot

design, authors should explain the experimental layout

for all error strata (main and subplots, for example), as

different forms of blocking may be introduced in each

stratum. For example, subplots can be completely

randomised or laid out according to an incomplete

block design. Similarly, main plots may be completely

randomised, or laid out in complete blocks or in rows

and columns.

Repeated measures and repeated experiments

In some cases, the same experimental unit is repeatedly

measured with respect to a factor of interest (generally

time or space). Some examples are: (i) weekly measure-

ments of height to estimate growth curves, (ii) sequential

harvests of perennial crops, (iii) daily recording the

number of germinated seeds on a Petri dish, (iv)

collecting samples at different depths on the same plot.

These examples lead to the concept of repeated measures

or longitudinal data (when measurements are taken over

time). The concept is similar to subsampling, with the

major difference that the repeated factor (time or space)

is not randomly selected within the experimental unit,

but it is ordered along a temporal or spatial metric.

Therefore, observational units are not independent, but

they may exhibit some autocorrelation pattern, that is

also known as �serial correlation�. Some advice to deal

with serial correlation is given in Repeated measures ⁄
longitudinal data section.

Similar to the concept of repeated measures, we can

mention the concept of repeated experiments, when the

whole experiment is repeated in a different time or place.

This does not pose relevant problems in terms of data

analysis and it should be considered a mandatory

practice, as implied by the guidelines for authors of

Weed Research (manuscript types): �Research should

cover sufficient temporal and spatial variation to be able

to make sound generalisations�. Such a statement does

not only refer to field and glasshouse trials, but also to

experiments carried out in more controlled conditions,

with material that is subject to spatial and temporal

variability (seed populations, batches of treated soils,

etc.).

Appropriate use of traditional techniques:
ANOVA and regression

Themost common experimental situation in weed science

is represented by one or more fixed treatment factors and

one quantitative response variable. In this situation, the

usual action would be to fit some sort of linear or non-

linear model, i.e. a regression model (when the treatment

factor is quantitative), or, in the common case of

experiments with replicates, to perform an ANOVA.

These techniques are very well established among

weed scientists, but in our experience they are not always

used appropriately. It is necessary that authors (and thus

editors) make sure that all the following issues are

appropriately considered:

1. Did you check for the basic assumptions after

performing an ANOVA and ⁄or regression?
2. If necessary, did you take the appropriate correcting

measures?

3. If you performed contrast or multiple comparison

testing, does this clearly fit within your experimental

design?

4. If you perform linear ⁄non-linear regression, did you

check the final model for lack-of-fit?

5. If you compared regression curves or built complex

regression models, were your decisions based on the

appropriate statistics?

The following part of this section is aimed at guiding

you towards an appropriate use of traditional statistical

techniques.

Checking for basic assumptions. Outliers

It should never be forgotten that ANOVA and regression

(as well as any other type of linear model) make

assumptions and it is necessary to ensure, as far as

possible, that these assumptions are satisfied. Without

this basic check, it is not possible to guarantee that

results are reliable and unbiased.

The three main distributional assumptions that

should always be verified relate to normality, homoge-

neity of variances (homoscedasticity) and independence

of experimental errors. Possible outliers should also be

inspected, as they may adversely affect parameter

estimation and inference.

The lack of independence in weed science may arise

when observations are grouped, such as in case of
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pseudoreplication, repeated measures, split-plot designs

and so on. Such grouping should be appropriately

accounted for in the analysis, as shown in Pseudorepli-

cation and other grouped data section.

The check for the other basic assumptions is generally

performed �ex-post�, i.e. the selected model (e.g. ANOVA

or regression) is fitted and then inspected. The lack of

normality and homoscedasticity, as well as the presence

of outliers, affect the distribution of residuals and thus a

graphical inspection of these latter may be crucial. In the

common case of fixed effects models, a graph of

�residuals vs. predicted� and a quantile–quantile (Q–Q)

plot may suffice, even though more advanced methods

exist, that are thoroughly discussed, for example, in

Faraway (2004). In any case, authors should always

state whether basic assumptions were carefully checked

and how. This is particularly important (i) with counts

and proportions based on a small number of replicates,

which can not be assumed as normally distributed and

(ii) when results differ by more than an order of

magnitude, so that their variances may not be homoge-

neous.

Correcting measures: transformations

Once outliers have been carefully inspected and appro-

priate action (removal or correction) has been taken,

large remaining deviations from normality and homo-

scedasticity require a correcting measure. If no measure

is taken, reasons should be given in the Materials and

methods.

The simplest action is to adopt a suitable transfor-

mation of the response variable, chosen by theoretical

considerations or previous experience. Instead of mak-

ing an arbitrary selection, authors may consider several

families of transformations, such as the Box and Cox

(1964) family. Other types of transformations are

reviewed in Atkinson (1985) and Piepho (2003).

Even though stabilising transformations represent a

useful and mathematically simple solution to non-

normality and variance heterogeneity, they may result in

several complications during the interpretation and pre-

sentation of results,mainly because transformedvariables

lose their direct biological meaning. As the main conse-

quence, after performing ananalysis on transformeddata,

authors are faced with the problem of selecting among

three alternatives: (i) report the means of transformed

data; (ii) report the naively back-transformed means;

(iii) report the means on the original scales, even though

analyses were performed on transformed data. Each

choice has advantages and drawbacks that are discussed

in Presenting transformed data section.

Because of the above complications, some care

should be taken with reference to the following issues:

1. Do not routinely transform certain types of data:

transformations may not be needed if no attempt is

made to use a parametric test. For example, a graph

of plant biomass over time may show different

standard errors for means at each sampling date; this

is not a problem as long as no attempt is made to ask

whether plant sizes differ between dates. Additionally,

consider that linear models (ANOVA, regression, etc.)

are quite robust to moderate departures from nor-

mality and homoscedasticity;

2. If possible, try to be consistent throughout the paper

in the choice of transformation;

3. Make sure that the transformation was actually

effective to meet the basic assumptions for linear

models;

4. In case of regression models (especially non-linear

models), do not forget that transforming the response

will distort the original relationship between the

response and the predictor, so that model parameters

will no longer retain their original biological meaning.

To avoid this, consider a transform-both-sides

approach, where both the observed data (left-side of

model) and predictor (right-side) are transformed

(Carroll & Ruppert, 1988). Several examples of this

approach may be found in the weed science literature

(see e.g. Streibig, 1988);

5. If necessary, consider other correcting actions or

other statistical methods more specifically designed

to analyse certain types of data. For example, the

heteroscedasticity may be corrected by using the

method of weighted least squares, with weights that

are inversely proportional to the variance at each

factor level (Carroll & Ruppert, 1988). The possible

dependence of the variance on the mean may be

explicitly modelled by using a �power-of-the-mean�
or other variance models (see some examples in Ritz

& Streibig, 2008). Heteroscedastic and correlated

errors may be analysed by the mixed model

approach, while non-normality and non-linearity,

together with heteroscedasticity, may be appropri-

ately treated by using generalised linear models

(GLIMs). Another technique that has recently come

into fashion is the use of robust estimators of the

covariance matrix (sandwich estimators; Lumley &

Heagerty, 1999).

Contrasts and multiple comparison testing

In case of experiments with replicates, the first step of

data analysis will probably be an ANOVA, with the aims

of (i) checking whether the above assumptions are met

and (ii) estimating the pooled standard error (�pure�
error). After the ANOVA, the next steps should diverge,

according to the type of explanatory variables (factors)
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and to the nature of effects. A possible scheme might be

as follows:

1. In the case of qualitative explanatory variables with

fixed effects, authors may be specifically interested in

the different treatment levels and thus may seek to

compare suitably defined means (marginal means, cell

means, etc.).

2. In the case of quantitative explanatory variables, the

authors will probably be interested in the overall

pattern of response and thus they will switch to

linear ⁄non-linear regression.

The most common way to make all pairwise com-

parisons of means (fixed effect factors) is through the

adoption of Multiple Comparison Procedures (MCP).

The approach is very handy, but it may create a

�multiplicity problem�, because the number of statistical

tests increases progressively, as the number of means to

be compared increases.

There has been much debate in the past about the use

and misuse of MCP; during the 1970s, MCP (and

particularly the Duncan�s Multiple Range Test; DMRT)

were adopted as standard methods of analysis for all

datasets. In response to criticisms, the use of DMRT

was exchanged for the Student–Newman–Keuls and

other more conservative tests. The debate went on (see

also Cousens, 1988, in this journal) and nowadays, we

have come to the point where some journals would not

even consider papers where MCP are used.

We feel that the use of MCP should not in principle

be considered right or wrong, it depends on the objective

of the experiment:

1. It is fully justified in the case of experiments aimed at

comparing a set of unrelated factor levels, for

example a number of different brands of herbicides

or crop varieties.

2. It is inefficient (but some would say it is wrong) in the

case of a quantitative explanatory variable (e.g. a

series of doses or times), where regression analysis

and curve fitting procedures may be more appropriate

(see later). However, there might be cases where the

researcher may not be able to identify or successfully

fit a regression model; in these cases, contrasting the

means of the successive levels (doses or times) might

be an appropriate alternative to curve fitting, as the

last resort.

3. It is inelegant (illogical) and inefficient when MCP

are used in experiments where treatments show some

internal structure. For example, we may have one

untreated control, one group of chemical herbicides,

one group of physical methods of weed control and,

within this latter group, we may have two solariza-

tion and two flaming methods. In this case, the

questions inherent in the objectives of the research

should be stated in terms of a few �contrasts of

interest� (Pearce, 1992), that directly stem from the

internal structure of the experiment (in this case:

untreated vs. treated, chemical vs. physical, solariza-

tion vs. flaming).

4. It is inelegant, when it is used in a poorly designed

experiment or a poorly interpreted dataset, wherein

hypotheses were not established in advance. A wider

adoption of contrast methodologies, following a

careful planning of experiments (as in the above

example), might help to limit the use of MCP to the

cases wherein it is fully justified.

In the end, we do not suggest avoiding the use of

MCP at all, but we do encourage authors not to go

straight ahead with them and to think carefully if they

really need all pairwise comparisons of treatment means.

If so, authors should also take a careful decision on

which procedure they should adopt. An acceptable work

plan may be:

1. Consider if you want to control the comparison-wise

(CWE) or the family wise error rate (FWE). The

CWE rate is the probability of wrongly rejecting the

null hypothesis (type I error) in one individual test,

while the FWE rate is the probability of at least one

wrong rejection of the null hypothesis when perform-

ing multiple tests. A CWE-controlling test might be

preferred when only a few comparisons or contrasts

are to be tested, each having a strong biological

relevance (single-contrast problems), while FWE

should be preferred in the case of a relatively high

number of simultaneous tests, especially when an

overall conclusion tends to be wrong when at least

one single test is wrong (Abdi, 2007). Do not forget

that, for a given sample size, a higher protection

against type I error implies a higher risk of type II

error (wrongly accepting the null hypothesis).

2. If you just want to control CWE in pairwise

comparisons, use t-tests [Least Significant Difference

(LSD) for balanced data]. There is no simpler and

more efficient alternative.

3. To control FWE, use the Tukey test that provides a

critical difference (Honest Significant Difference;

HSD) for balanced data. For unbalanced data, there

might be better alternatives, such as the simulation-

based procedure of Edward and Berry (1987), which

practically coincides with the Tukey test in the

balanced case, or procedures based on the general

multivariate t-distribution (Hothorn et al., 2008).

4. To control FWE, do not use Student–Newman–Keuls

or Duncan�s MRT, because they do not control the

FWE and do not yield a single critical difference for

balanced data (Hsu, 1996).
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5. To compare a single level (generally a control or pre-

defined treatment) to each and every one of the other

levels of the factor, the Dunnett test should be used.

6. In a factorial experiment, all of the above will also

apply to comparisons controlling for the level of one

or more treatment factors. For example, in a two-

factor experiment with factors A and B and presence

of interaction, a comparison of A-means by levels of

B, and vice versa may be of interest.

7. Do not forget that the same kind of �multiplicity�
problem is raised whenever multiple tests are per-

formed within an experiment, thus also when testing

several contrasts. In all these cases, an adjustment

procedure should be used, such as the Bonferroni�s
method. Other and more advanced methods may be

found for example in Hothorn et al. (2008).

Further information on MCP may be found in Hsu

(1996) and there is a useful chapter by Maxwell and

Delaney (1990). Referring to the use of critical differ-

ences and significance letters in the presentation of

results, some advice will be given in Presenting the data

section.

Linear and non-linear regression. Checking for

lack-of-fit

Quantitative explanatory variables, for example a set of

increasing herbicide doses, call for regression analysis.

Indeed, even though we include in the experiment some

particular dosage levels, we are actually interested in the

shape and scale of the overall response to the increas-

ing ⁄decreasing dose (see e.g. Schabenberger et al.,

1999).

During the 1980s, polynomial regression used to be

very frequent, whenever curves deviated from linearity

(which is almost always the case in weed science).

Nowadays, the availability of fast computers has trig-

gered a very widespread use of non-linear regression

techniques and the choice of the appropriate model

(linear, non-linear, etc.) has become mainly a matter of

biological validity, according to the aims and experi-

mental design. In this respect, it is necessary to point out

that polynomial regression may still play its role, thanks

to its simplicity and to the possibility of providing a

good description of the dataset (high R2 values).

However, care needs to be taken, in that the shape of

the fitted curve may not be supported by the data and

may not be biologically reasonable.

Whatever model is chosen, least squares analysis

makes the usual assumptions of normality, homosce-

dasticity and independence that have to be carefully

verified with the appropriate diagnostic tools. Apart

from this, it is also necessary to verify whether the

equation shows a good fit with the experimental data.

This may be easily done by inspecting the residuals and,

in case of trials with replicates, by using an F-test for

�lack-of-fit�.
It is necessary here to stress that the coefficient of

determination (R2 statistic) should not be systemati-

cally used as a measure of goodness of fit, especially

in non-linear regression. Indeed, the R2 value may be

seen as the comparison of the residual sum of squares

(SS) for a fitted model with the residual SS for a

model with only the intercept. This latter may not be

among the parameters being fitted; thus the R2 value

that is reported by regression packages may not be

meaningful.

Secondly, the R2 value depends on the range of

observed response: the lower the range, the worse the R2

will look, even when the model is appropriate. In

contrast, if the number of parameters is too high

compared with the number of observations, a bad

model could also result in a high R2.

Last, but not least, it is possible to obtain high R2

values also when estimated parameters make no sense or

confidence intervals are very wide. This may frequently

happen for example in herbicide bioassays, when the

observed range of response is too narrow to obtain good

estimates of lower and higher asymptotes for a sigmoi-

dal response model.

A traditional reference for regression analysis is

Draper and Smith (1998). In the case of non-linear

regression, a practical reference is Ritz and Streibig

(2008).

An important general point regarding non-linear

regression is that, as with linear and polynomial

regression, the experimental design should be reflected

in the overall model. For example, the effects of blocks

or nesting factors are frequently disregarded, mainly

because they are not easily introduced in non-linear least

squares packages. In this case, non-linear mixed models

may be necessary (see e.g. Accounting for �environmental�
variability in repeated experiments section) and an expert

advice from a statistician may be very helpful.

Comparing regression curves and building models

In some cases, experiments are designed with increasing

rates of a quantitative variable, measuring the responses

at two (or more) levels of another qualitative explana-

tory variable. A trivial example might be the weight

increase over time for several weed species: in this case

time is the quantitative predictor, while the species is the

categorical predictor.

In such conditions, it would not be efficient to

compare the weight of those species at each observation

time, by using a multiple comparison test. The correct
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approach here would be to compare the two regression

curves or some of their parameters.

In the case of linear models, this may be done by

using an ANCOVA approach, wherein qualitative predic-

tors are incorporated within the regression model. A

similar approach can be taken in the case of non-linear

regression curves, where nested models may be com-

pared by using a likelihood ratio test, as shown in the

case of herbicide bioassays by Streibig et al. (1993).

Such an approach is very powerful and the process of

model building may bring inside the fitted equation

several explanatory variables, generalising the tradi-

tional approach of multiple regression. This raises the

problem of variable selection and comparison of alter-

native models, that should not be done exclusively on

the basis of statistical significance and ⁄or R2 values, to

avoid the unreliable selection of �the best model�, biased
parameter estimation and increased experimentwise

error rate, due to multiple hypothesis testing. Otherwise,

the information theoretic approach, based on Akaike�s
Information Criterion (AIC) or Bayesian Information

Criterion (BIC), should be preferred, which introduces a

penalty for the number of parameters in the model

(Whittingham et al., 2006).

When do we need to go beyond traditional
ANOVA and regression?

Traditional ANOVA and linear ⁄non-linear regression

have been the most widely used techniques in agricul-

tural research and, if appropriately applied, they may

help solve a high proportion of statistical problems with

great simplicity. However, their usage, if not technically

wrong, may be inefficient in some important situations,

such as:

1. Experiments repeated in several environments;

2. Pseudoreplication ⁄ subsampling and other types of

grouped observations;

3. Repeated measures and longitudinal data;

4. Unbalanced designs;

5. Counts and proportions;

6. Rating scale data.

In these situations, it may be possible to perform

correct analysis with traditional methods, but this may

hinder a clear and effective presentation of results. As

consultants, we do not routinely recommend to abandon

ANOVA and regression, but we would like to highlight

some possible alternatives, with particular reference to

mixed models and GLIMs, that are becoming increas-

ingly important in several branches of plant protection

(Garrett et al., 2004).

Mixed models contain at least one random and one

fixed effect, plus the residual error. The concept is not

new to weed scientists; for example, split plot designs are

mixed models, because of the presence of two error

strata (main plot error and residual error). Traditionally,

mixed models have been analysed within the frame of

ANOVA, but recent advances in both theory and compu-

tation have transformed the mixed model framework

into a very flexible tool, for example to extend the power

of linear models to grouped data with heteroscedastic

and autocorrelated errors, both for balanced and

unbalanced designs.

On the other hand, GLIMs may be seen as an

extension of linear models to non-normal responses and

they may be successfully used to analyse counts and

other non-normal data, without a prior transformation.

Mixed models and GLIMs can be combined as in

generalised linear mixed models (GLMMs).

Compared with ANOVA and regression, mixed models

and GLIMs will require some effort to be appropriately

mastered; we will not go into any detail here, but

encourage the interested readers to consult one of the

available textbooks (e.g. Schabenberger & Pierce, 2002)

or search for an expert�s advice. The gain in reliability of

results and clarity of presentationmaybeworth the effort.

Accounting for �environmental � variability in repeated

experiments

Experiments are frequently repeated in several �environ-
ments� (locations, years, fields, batches, ovens, etc.), with
the aim of measuring the amount of variability that they

produce on the observed responses. So far, these

repeated experiments have been frequently analysed by

traditional ANOVA ⁄ regression, even though this often

prevents an effective summarisation of results, especially

in the case of non-linear regression.

As an example, we may think of the degradation

curve of one herbicide in five locations; with non-linear

regression, we can estimate five half-life values, one for

each location and we can test for possible significant

differences among them. In this case, the environment is

regarded as a fixed effect and results specifically refer to

the five levels under investigation.

On the other hand, it may be possible (and conve-

nient) to regard the five environments as a random

sample drawn from a population of interest; in this case,

the resulting model has one fixed (time) and one random

(environment) factor and, thus, it may be regarded as a

mixed model. Within this framework, it is possible to

estimate one average half-life value, plus one �variance
component�, measuring the inter-environments variabil-

ity, i.e. how the half-life changes from one environment

to the other. This second model is more parsimonious

than the former and allows for a more effective

presentation of results.
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Such an approach has been used for example in

Nielsen et al. (2004) and it may be applicable whenever

the design includes one or more random factors to

account for �environmental� variability, including blocks,
sites and other blocking factors.

Pseudoreplication and other grouped data

If we compared five herbicides in a randomised block

design with four replicates and measured the weight of

surviving weeds on three randomly taken quadrats of

0.25 m2 per each plot, we would have a typical �sub-
sampling� design. In this situation, it would be wrong to

analyse the data as a randomised block with 12

replicates, because the data from the same plot are not

independent from one another.

One possibility is to take the average of subsamples

and submit this to further analysis. This is correct only if

the number of subsamples is constant.

One further possibility is to analyse the whole

dataset, making a clear distinction between the two

error strata, i.e. true replicates (experimental units:

plots) and subsamples (observational units: quadrats).

This can be simply accomplished, also with low-level

computing tools, by performing a split-plot ANOVA, with

herbicides as �main plots� and quadrats as �subplots�. In
this way, the treatment effect (main plots) is tested on

the appropriate error term and observations taken on

each plot are naturally grouped, which accounts for

their autocorrelation.

A more advanced and flexible solution, that works

equally well when the number of pseudoreplicates is not

constant, is to switch to a mixed model statistical

package and include the �plot� as a random effect in the

model (see Piepho, 1997, for an example).

All the above considerations hold in other cases

where observational units are grouped within experi-

mental units, i.e. plots, pots, Petri dishes, etc.; several

examples are given in Pinheiro and Bates (2000).

Repeated measures ⁄ longitudinal data

As an example of longitudinal data, we may consider the

analysis of growth for a crop at increasing weed

densities, where successive measurements are taken on

sub-samples of the same plot. The situation is similar to

that described in the previous section about subsam-

pling, with the important difference that sampling times

are not randomly taken within plots, but they are

ordered along a temporal metric. Therefore, we might

expect that the autocorrelation pattern is partly

explained by the relative position of sub-samples (serial

correlation): for example, the closer in time are the sub-

samples, the higher may be their autocorrelation. In this

situation, it would be wrong to use a simple two-factor

(weed densities and times) ANOVA with independent

errors, because longitudinal data violate the indepen-

dence assumption.

One possible solution, that is feasible also with basic

level statistical software, is to regard the design as a

split-plot, with densities on main plots and times on sub-

plots and use a traditional ANOVA (split-plot in time).

This solution groups the observations obtained in each

plot (thus removing part of their autocorrelation), but it

is overly simplistic, because: (i) it assumes equal corre-

lation and it does not account for a possible decay of

correlation over time (serial correlation); (ii) if we intend

to use non-linear regression and fit a growth function to

the observed data, the split-plot structure, with two

error strata (�between plots� and �within plots�), is not

easily introduced, without using advanced statistical

software facilities.

The most correct solution is to switch to a mixed

model approach; in this case, we introduce the �subject�
(plot) as a random effect in the analysis and fit a growth

function to the data obtained in each plot. Therefore, we

obtain the estimated regression parameters, plus the

estimated residual error and one �variance component�
for each regression parameter, measuring how the

estimate changes from plot to plot. The advantage is

twofold: (i) the analysis clearly reflects the experimental

design, with all the necessary error strata, (ii) if necessary,

several alternative structures (compound symmetry,

general, autoregressive, etc.) may be introduced to

account for serial correlation (Piepho et al., 2004).

A similar situation occurs in weed surveys or spatial

data, when measurements are repeated in different

spaces (Dormann et al., 2007).

Unbalanced designs

Apart from the case of one-factor completely rando-

mised unbalanced designs, in all the other situations the

unbalance requires particular attention with reference to

the estimation of means and hypothesis testing. Unbal-

ance arises when the number of replications for each

treatment (or the number of combinations for each

factor level in factorial designs) is not the same, because

of the peculiarities of the experimental design or to data

lost for unforeseen circumstances. In this latter case, the

causes for the loss must be unrelated to the treatment,

otherwise bias will be introduced.

A small unbalance has been traditionally corrected by

manual estimation of the missing data (LeClerg et al.,

1962). Such a procedure may now be considered out of

date, as fitting a linear model implicitly accounts for any

unbalance, providing that all the relevant model terms

are included.
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Concerning the estimation of treatment means, in the

case of unbalanced designs, arithmetic (or marginal)

means across observations are biased and thus should

not be used for comparisons. Dealing with fixed effects,

adjusted (least squares) means are indeed preferable

(a simple example of calculation is given in Shaw &

Mitchell-Olds, 1993), while for random effects the

outcome for a certain factor level may be predicted by

using the best linear unbiased predictors (see Piepho,

1994 for an example).

Another element of concern relates to the fact that

with unbalanced data there are no unique decompo-

sitions of SS and the sequential (type I) SS that are

output by several �traditional� ANOVA packages,

become dependent on the order with which effects

enter the model. For example, if we have a rando-

mised block design with one missing observation, the

SS for treatments (and related F-test) will depend on

whether the treatment effect has been entered in the

model before or after the block effect. It is therefore

fundamental to select a proper sequence of effects, as

explained for example in Searle (1987). In the previous

case, the correct test for treatments is obtained by

fitting blocks first, then adjusting treatment effect for

blocks. Provided that effects are specified in the

correct order and marginality restrictions are observed

(such as: fit an interaction only after main effects have

been fitted; fit a quadratic term only when the linear

term has been added already), all hypothesis tests in

linear models can be done using type I SS (Nelder,

1994).

Other authors suggest the use of type III SS in the

case of unbalanced data (see e.g Milliken & Johnson,

1984). In this case, some care needs to be taken, for

example with a factorial design with unequal subclass

numbers. Here, type III SS provide tests for main

effects in the presence of interaction that test hypoth-

eses not depending on subclass numbers. Nelder

(1994) pointed out, however, that, in the presence of

interaction, a test of main effects is irrelevant and that

one should test for main effects only when interaction

is deemed absent. In these circumstances, it is neces-

sary to reduce the model by dropping the interaction

and either (i) use the type I SS with two sequences, i.e.

fitting B first (and A second) would provide a test for

main effect A adjusted for B, while fitting A first (and

B second) would provide a test for main effect B

adjusted for A, or (ii), which is equivalent in this

particular case, use the type III SS. These tests are the

most powerful and hypotheses would be independent

of subclass numbers.

In conclusion, in case of unbalanced data the advice

for authors is twofold:

1. Do not to uncritically rely on treatment means and

ANOVA tables, as obtained from statistical packages.

They may not be easily interpreted.

2. In presence of random effects, adopt a mixed model

approach, wherein balanced and unbalanced data are

considered within the same framework.

Mixed models: things to care about

Even though we have given just a few examples of their

possible applications in weed science, it should be clear

that the mixed model framework is very powerful.

However, this is sometimes a disadvantage, because we

may be encouraged to adopt unnecessarily complex

models and variance structures. For those who are

already acquainted with mixed models, we would like to

recommend a possible working strategy, to avoid

�overfitting�:

1. Make sure that the inclusion of random effects is

really justified and make sure that the observed levels

of an effect may reasonably be considered as a

random sample drawn from the population of inter-

est. For example, if we have organised an experiment

in two very close locations, with the aim of obtaining

site-specific information, we should not regard the

�location� effect as random.

2. Start with a simple mixed model, without the inclu-

sion of particular variance structures and check the

basic assumptions. In particular, graphs of the

�within-group� residuals, together with �Q–Q plots� of
the estimated random effects may give a reasonable

indication about the presence of heteroscedasticity

and autocorrelation of errors.

3. If a careful inspection of residuals suggests so, select

an appropriate variance structure. One simple way of

selecting between two alternative variance structures

is to fit the model with both structures and compare

the fit on the basis of model selection criteria like the

AIC or BIC: the lower the value, the better the model.

In general, mixed models may be a complex subject;

apart from the above-mentioned references, another

good example-based book is Littell et al. (2006). Use of

mixed models is one of the cases where expert advice

might be justified.

How to deal with binomial counts

We may consider an experiment where we tested some

herbicides in a randomised complete block design with

three replicates and assessed the number of dead weeds

(d) and total number of weeds (n) in each plot. Working

14 A Onofri et al.

� 2010 The Authors

Journal Compilation � 2010 European Weed Research Society Weed Research 50, 5–24



with counts, we should not in principle assume normal-

ity and homoscedasticity and thus it is wrong to use an

ANOVA or regression, without considering an appropri-

ate correcting transformation.

In this example, counts have a natural denominator

(n) and the possible outcomes are only two (dead ⁄
alive), so that we normally talk about �binomial�
counts. As the first and traditional option, these counts

are converted into proportions (d ⁄ n) or percentages

and submitted to standard analyses, possibly after a

suitable transformation of the response variable

(square root or angular).

Such an approach is generally acceptable, but it may

not be always efficient. First of all, counts may be

positively skewed, with several 0s, which prevent an

effective transformation into normally shaped data.

Secondly, transformations will alter the scale of the

dataset, making it less clear and readable (the arcsine

square root of the proportion of dead weeds is not a

natural metric for interpretation!).

Instead of trying to force the dataset to meet the

basic assumptions for linear models, we might reason-

ably assume that it follows a binomial distribution and

use a model that is specifically designed to deal with

that distribution (and with several others). In particu-

lar, we would suggest fitting a GLIM, with binomial

error and logit ⁄probit link. We cannot give details here

(see e.g. McCullagh & Nelder, 1989), but we only

mention that this GLIM itself takes care of the

characteristics of our dataset (non-normality, hetero-

scedasticity, non-linearity ⁄non-additivity) and we may

estimate parameters, test hypothesis and compare

treatments, as we would normally do in the ANOVA ⁄
regression, but with far fewer problems in terms of

distributional assumptions.

Such an approach has become popular for the

analysis of quantal pesticide bioassays (logistic regres-

sion or probit regression; Finney, 1979) and it has

been one of the first examples of GLIMs. However,

those who are already familiar with GLIMs and

intend to use them in replicated field trials (as in the

above example) should not forget that, while distri-

butional assumptions are relaxed, the independence

assumption still holds. Indeed, observational units (the

plants, in this example) should be randomly chosen

and independent, while in replicated field trials they

are generally clustered within experimental units

(plots).

Analogously to subsampling (see above), this issue

requires the use of a GLMM (see e.g. Bolker et al.,

2009), that includes the subject (plot ⁄pot ⁄Petri dish) as
a random effect in the GLIM (Piepho, 1999). In other

words, we treat pseudoreplication in GLIMs as we have

shown in the case of linear models.

How to deal with multinomial counts

In some cases, the possible outcome of an experiment

may not be binomial, but multinomial. An example is

given by Mercer et al. (2006), who compared the seed

status (germinated, dormant and dead) of a series of

crop-wild sunflowers hybrids. In this case, traditional

methods are difficult to apply, as the three counts for

each variety, eventually transformed into proportions,

should be used one at a time within an ANOVA.

With a GLIM, the seed status may be considered as a

multinomial dependent categorical variable (as the

above authors in fact did), by using a �multinomial�
family (an extension of the binomial distribution) and a

logit link; the advantage with respect to a traditional

approach should be clear. If the categories have a

natural ordering, special kinds of GLIMs may be more

appropriate (see next section).

Rating scale data

In several cases, experimental units are scored on a scale

that does not carry any biological meaning, apart from

arranging those subjects in a certain order. For example,

herbicide phytotoxicity and efficacy are frequently

scored on ordinal scales (e.g. from 1 to 9), by means

of subjective visual observations. In some cases, the

score itself is submitted to ANOVA, although this may not

be appropriate, as statistical methods based on means

and differences (such as the ANOVA) make sense only

with metric data.

This situation is the same as that of multinomial

data; indeed, we may (i) regard this kind of experiments

as having nine possible outcomes (the nine phytotoxicity

levels), (ii) count for each treatment the number of

subjects (plots) in each of the nine categories and (iii)

submit those counts to GLIM analysis (multinomial

family and logit link). This is possible and we could even

take advantage from the fact that categories are

naturally ordered, by using some particular forms of

GLIMs, such as the proportional odds model (a good

example is shown again in Schabenberger & Pierce,

2002) and the �threshold model� proposed by McCullagh

and Nelder (1989). However, this requires a high

number of replicates, while herbicide phytotoxicity field

trials are generally carried out with no more than 3–4

replicates.

In these cases, non-parametric methods, such as

rank-based methods, should at least be considered.

Indeed, ordering observations from, say, highest to

lowest, the rank for one observation is the number of

observations higher or equal to that observation; such a

rank is easily interpretable, as well as the difference in

rank between two observations.
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Examples of rank-based methods are the Kruskal-

Wallis test that may correspond to the one-way ANOVA

as a parametric test, and the Friedman test, that may

correspond to the ANOVA for a randomised complete

block design. Recent advances in this field have extended

the range of applicability of rank-based methods beyond

one-way layouts, up to factorial, split-plot and repeated

measures designs (Shah & Madden, 2004).

Non-parametric statistics have been rather under-

rated by weed scientists, although rank-based methods

have several good properties; they are easy to apply and

understand and they are only slightly less powerful than

their parametric equivalent, in case all the assumptions

hold for the latter. A book-length treatment can be

found in the classic work by Siegel and Castellan (1988)

and in Brunner et al. (2001).

How to deal with counts with no natural denominator

In weed science, very frequently counts cannot be

transformed into proportions, as there is no natural

denominator. Examples are the number of weeds or

seeds per square metre, the number of tillers or leaves

per plant, the number of insects per leaf, etc.

These kinds of counts are traditionally submitted to

ANOVA, either directly or after a square root or logari-

thmic transformation. This is acceptable, but the adop-

tion of a GLIMmay help reach more reliable conclusions

by using the �Poisson� error family with log link. Such an

approach was used in an experiment relating to the

counts of poppies on field plots, with five treatments and

four blocks, as reported in Schabenberger and Pierce

(2002). With quantitative explanatory variables, this

approach is known as �Poisson regression�.
Also in this case, possible problems with the cluster-

ing of observations within experimental units should be

appropriately accounted for, e.g. by using a GLMM.

Time to event data

In weed science, researchers may be interested in time to

event assessments, as in the case of germination studies.

Frequently, the time course in the number of germinated

seeds is analysed by using non-linear regression, even

though this may pose problems related to non-normal

error distribution, heteroscedasticity and serial correla-

tion between the number of seeds counted in different

dates on the same experimental unit (Petri dish, pot,

plot). Furthermore, it is necessary to take into account

viable seeds that have not yet germinated at the end of

an experiment (censored observations).

These problems were reviewed by Scott et al. (1984),

who proposed the use of survival analysis. This tech-

nique is normally used in medical research to model time

to event data, in the presence of censored observations

(Venables & Ripley, 2003); even though its real useful-

ness in weed science has yet to be elucidated, survival

analysis may represent an option in some experimental

situations. A good discussion of this is given by Scheiner

and Gurevitch (1993).

GLIMs: things to care about when working with all

kinds of counts

As mixed models, GLIMs are very powerful, even

though they may represent a rather technical subject.

The above-mentioned book of McCullagh and Nelder

(1989) provides a complete reference, while Faraway

(2006) gives a more application-oriented presentation

and Molenberghs and Verbeke (2005) extend the prob-

lem to repeated measures.

For those who are already familiar with GLIMs, we

would like to draw attention to two basic issues, strongly

connected to each other:

1. Do not forget the clustering of observations within

experimental units;

2. Check always for overdispersion.

Working with counts, observational units (plants,

seeds, etc.) are almost always clustered within experi-

mental units and so they are never truly independent; if

we forget this, we unacceptably increase the assumed

number of true replicates (i.e. we confuse true replicates

with pseudoreplicates). We have already mentioned that

in presence of clustered observations it is necessary to

use a GLMM and include the observational unit as a

random factor in the GLIM.

If not appropriately accounted for, the clustering of

observations may result in the so-called �overdispersion�,
i.e. a residual deviance that is much larger than would be

expected if the model were correct. This problem is very

frequent in GLIMs and, apart from clustered observa-

tions, it may arise for several other reasons (Faraway,

2006):

1. The selected family does not correspond to the real

underlying distribution of the response variable. For

example, if we use a Poisson family with weed counts,

we assume that weeds are randomly distributed across

fields, while their distribution is clearly aggregated

(patchy).

2. Some important predictor is missing.

3. A few outliers are present.

In the presence of overdispersion, parameter esti-

mates will still be reliable, but standard errors will be

underestimated.

Overdispersion should always be checked: as a rule of

thumb, we can suspect it whenever the residual deviance
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(or better the sum of squared Pearson residuals) is

higher than its degrees of freedom. If we are in this

situation, we should do one of the following:

1. Change the error family (e.g. in the frequent case of

patchy distributed weeds, we might switch from

Poisson to negative binomial);

2. Use a scale parameter (e.g. via a Pearson-type

estimator), so that standard errors of estimates are

appropriately adjusted;

3. In case of clustered observations, fit a GLMM (as

mentioned above).

Other more advanced approaches have been sug-

gested by Hughes and Madden (1995).

Aside from overdispersion, a further very important

issue is that GLIMs may fail in reaching convergence

and ⁄or producing acceptable estimates with many zeros

in count data. This situation may be common in weed

surveys and it is not easy to deal with. One advice may

be that if a treatment produces zeros only, it may be

deleted to produce a reasonable analysis. Other sugges-

tions might be given (Ming & Agresti, 2005), but this is

one of the cases where, very frequently, we need to go

back to ANOVA ⁄ regression, even though this method

would seem less appropriate.

Several response variables: multivariate
statistics

A great part of datasets collected by weed scientists are

multivariate, in the sense that several variables are

measured in each subject. More specifically, the weed

flora (vegetation dataset of species abundances in sites

or quadrats) in itself is a perfect example of a multivar-

iate �entity�. Very frequently, the different variables are

isolated and analysed separately; in some cases this

approach works well, but in other cases it does not

permit insights into possible relationships among vari-

ables and key features of interest. As the consequence,

multivariate analysis has been used in vegetation

research since the 1950s, with the aim of exploring and

summarising very complex datasets. Several examples

may also be found in weed science. The subject is rather

complex and a full treatment is far outside the aims of

these paper. A review paper relating to multivariate

methods in weed research is Kenkel et al. (2002).

Another useful review (relating to microbiology) has

been published by Ramette (2007) and a classical

textbook is that of Legendre and Legendre (1998).

From an editorial perspective, the use of multi-

variate methods may raise some concern by referees,

especially if they are not very experienced in the

application of those methods. Some of the questions

raised may be:

1. Is the use of multivariate analysis fully justified? As

we mentioned at the beginning, a poor dataset may be

easily hidden behind complex analyses.

2. Is the selected method appropriate to the aims? The

world of multivariate analysis is multifaceted and

some selection criteria appear to be rather arbitrary.

3. Are the assumptions for certain methods fully satis-

fied? Do not forget that also multivariate methods

make several assumptions.

4. Are the effects significant or not? Multivariate meth-

ods frequently lack formal hypothesis testing, which

may perplex the �most traditional� weed scientists, but

it may be fully justified to produce an exploratory

analysis without significance testing.

5. Is the level of detail deep enough to be able to repeat

the analysis? The use of multivariate methods may be

preceded and followed by several optional types of

data manipulation. For example, it is usually crucial

to standardise different variables before submitting

them to Principal Component Analysis (PCA) or

similar methods.

Some of these questions may be trivial, but very

frequently multivariate datasets are fed into available

software, without having the necessary background to

understand the output. We here give some advice, to

avoid certain common pitfalls and misunderstandings,

that may pose an obstacle to the process of paper

evaluation and review.

From a general perspective, some details should

never be neglected in the Materials and methods, that is:

1. Reasons for the choice of a particular multivariate

method (the answer should logically follow from the

aims of the experiment).

2. Clear identification of experimental units (objects)

and variables (remember that experimental units are

defined through the sampling process, before making

measurements).

3. Clear indication of which pre-processing treatments

(if any) for variables (recoding, standardisation,

normalising transformation) have been performed.

In some cases, this pre-processing is automatically

performed by the software and authors should be

aware of that.

4. Report clearly how missing data (if any) were

handled.

5. Report whether basic assumptions were checked and

how. Although violations of assumptions may not be

very problematic, especially when formal hypothesis

testing is not required, authors should always make

this check and behave accordingly. In particular, keep

in mind that normalising transformations used on one

variable at a time do not necessarily imply that the

overall distribution becomes multivariate normal.
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6. Do not forget that the simultaneous use of differently

distributed variables (continuous, ordinal, categori-

cal, if appropriate to the selected method) and ⁄or of
variables of a different nature (agronomical, mor-

phological, meteorological, biochemical, etc.) should

always be very carefully and adequately motivated

(Gower, 1971; Bramardi et al., 2005). Keep also in

mind that data with many zeros may pose a problem.

For example, they may give rise to the so-called

�horseshoe� effect (Digby & Kempton, 1987).

Some more specific advice can be given with reference

to the most important multivariate methods, organised

according to their aims.

Describing data and reducing their dimensionality:

ordination methods

Ordination methods are aimed at reducing the complex-

ity of a multivariate dataset, with only a minor loss in its

informative power. These methods are generally used in

an exploratory setting and thus the lack of formal

hypothesis testing should not be regarded as a problem;

in this case the weed scientist�s experience and knowl-

edge of literature are the most important ingredients for

a reliable interpretation of results.

The most widespread method of ordination is PCA,

which is aimed at describing the variation in a set of

original and correlated variables by using a new set of

uncorrelated variables [principal components (PCs)],

each obtained by a linear combination of the original

ones. This method is very powerful and may give a very

effective summarisation of complex datasets, although

authors should not forget the following:

1. The PCA needs a set of quantitative variables,

characterised by (i) a linear correlation structure, (ii)

no outliers, (iii) no missing data and (iv) few zeros.

Note that in weed surveys, the above criteria may not

be met, especially when sites differ greatly for the

composition of weed flora.

2. The PCA requires variables on comparable scales;

otherwise, standardisation is required. Mention

clearly if standardisation or other kind of �pre-
manipulation� has been performed.

3. Mention the percentage variance explained by each

PC.

4. Mention whether some sort of rescaling on PCs has

been used. This is particularly important in those

cases where results are summarised by using �biplots�,
as the selection of one particular scaling option

strongly affects the interpretation of the plot, in

terms of distances and angles. For example, one

scaling may allow Euclidean distances between

objects to be interpreted, but not those between

variables, while another scaling does not permit

either. A typical mistake is to drag and pull a PCA

plot so it fits the layout, but to forget that axes need to

be equally scaled for any geometric interpretations of

distances and angles. A good reference for these issues

is Digby and Kempton (1987).

5. Indicate the quality of representation of individuals

and variables in the represented plane.

6. A minimum spanning tree (Gower & Ross, 1969) may

be superimposed on the plane to help the interpreta-

tion of the relationships among individuals.

Giving more information is far beyond the objectives

of this work, but it may be useful to mention other

ordination techniques for those cases where PCA is not

applicable. In particular, we mention Principal

Co-ordinate Analysis (PCoA; also know as Metric

Multidimensional Scaling; see Demey et al., 2008;

Gower, 1966), Correspondence Analysis and Non-

Metric Multidimensional Scaling. All these methods

have been reviewed in Kenkel et al. (2002); their

selection is not easy and thus it is imperative that

authors state clearly the reasons behind their choice.

Grouping observations – cluster analysis:

classification methods

The term �cluster analysis� embraces a wide range of

techniques aimed at taking a certain number of individ-

uals and discovering groups (clusters) of relatively

similar individuals, based on a group of clustering

variables. The analysis may be based on one of several

(dis)similarity indices and can be performed by using a

high number of different clustering techniques: we only

mention that, among agglomerative clustering methods,

we can count at least 10 algorithms (single linkage,

complete linkage, group average, UPGMA, Ward�s, just
to name a few).

We will not go into detail here, but we would like to

point out that cluster analysis is a very powerful

technique and it is relatively easy to apply. Thus, it is

very commonly used in several branches of plant science,

for example molecular biology and genetics, and,

sometimes, it is considered more �exact� or �precise� than
ordination techniques (e.g. PCA), that, by retaining a

reduced set of new variables (or components), result in a

loss of information. Note, however, that classification

methods also produce a loss of information when

forming the clusters, because all agglomerative cluster-

ing algorithms distort the relationships between individ-

uals by changing the definition of the original distances

(or similarities) by the choice of the aggregation method

(see Everitt, 1979 for more detail). We recommend

authors to be very careful about:
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1. Proper selection of distance ⁄ aggregation ⁄ (dis)simi-

larity index (see e.g. Kosman & Leonard, 2005);

2. Proper selection of clustering method;

3. Proper determination of optimal number of clusters.

Furthermore, if one wants to go beyond a purely

descriptive analysis, it is necessary to:

1. Use some kind of formal hypothesis testing procedure

(Mohammadi & Prasanna, 2003), to assess the

optimal number of clusters;

2. Assess the precision of the cluster, which is the

stability of the formed branches if the experiment

would be repeated. A bootstrap approach (Jain &

Moreau, 1987) and ⁄or the relation between the

original and final distance matrices (Sokal & Rohlf,

1962) may be useful for hypothesis testing.

Furthermore, it should not be forgotten that ordina-

tion methods (like PCA) may be better than cluster

analysis at discovering important groupings in the

dataset and, above all, they may be better in showing

when a real grouping does not exist (Venables & Ripley,

2003). Indeed, by its very construction, cluster analysis

and dendrograms may be suggestive of groupings when

no such groupings truly exist.

Individuals and ⁄ or variables partitioned in groups –

canonical tools

The above methods work with independent individuals,

without any natural intrinsic partitioning. In some cases,

this natural partitioning exists: think for example about

an experimental trial aimed at comparing the composi-

tion of weed flora with different agricultural systems,

based on observations repeated in several years. Here,

we have groups of data for each agricultural system and

Multivariate Analysis of Variance (MANOVA), Canonical

Discriminant Analysis and Canonical Variate Analysis

may help determine: (i) whether the groups are statis-

tically different from one another, (ii) which of the

measured variables can better contribute to discriminate

among groups and (iii) assign new observations to one

of the groups.

In contrast to the previous multivariate methods that

are mostly descriptive or exploratory, some formal

hypothesis testing can be required here and thus it is

very important that the dataset meets the following basic

assumptions:

1. Joint distribution of variables should be approxi-

mately multivariate normal;

2. No outliers are present;

3. Within-group covariance matrix must be homoge-

neous (analogous to the assumption of homoscedas-

ticity in ANOVA);

4. As in PCA, the underlying data structure must be

linear;

5. The total number of sampling units must exceed the

number of measured variables.

Authors should check all the above and, if necessary,

take the appropriate correcting measures.

In other cases, variables are partitioned in two sets

(such as one response set and one factor set; for example a

set of weed species and a set of environmental variables)

and we aim at determining the correspondence between

them. Techniques such as CANonical CORrelation

Analysis (CANCOR) may be appropriate. Roughly

speaking, CANCOR may be seen as an extension to

multivariate regression, where we have more than one

response variable. The aim will be to find linear combi-

nations of one set of variables that best correlate with

linear combinations of the other set of variables (Everitt,

2005). Statistical tests are available to determine the

significance of correlations, but they make the usual

assumptions of multivariate linearity and normality,

which should always be checked at the beginning.

Other canonical methods exist, that allow one to

incorporate environmental covariate information in the

definition of scores for objects and variables. We only

mention Redundancy Analysis and Canonical Corre-

spondence Analysis and refer to the above cited works

for more detail.

Presenting the data

Based on experience, it is possible to make some simple

suggestions on the appropriate presentation of statistics

in Weed Research. Of course, they should not be taken

too literally, as there are alternative correct ways to do

things.

Description of experimental methods

1. The experimental design must be stated explicitly,

especially with regard to replication, structure (e.g.

factorial; nested; dose response) and layout (e.g.

completely randomised; randomised complete block;

Latin square; lattice). Where a split-plot design has

been used, it must be clear which treatments were on

the main plots and which were on the sub-plots and,

for each stratum, it should be clear what layout has

been chosen (e.g. main plots may be randomised

according to a lattice design).

2. The type of analysis should be stated explicitly. For

example, if the results are analysed by ANOVA,

followed by a comparison of means using the LSD,

the text must say so, rather than leaving it to the

reader to assume this.
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3. Where statistical procedures are generic for all

experiments being reported, it may often be helpful

for the details of the analyses to be placed under a

separate sub-heading.

4. If an unconventional method of analysis is used, a

source reference should be given.

5. It may be useful to refer to the computer package

used, unless the statistical method is a standard one

and it is clearly stated (clear explanation of the

relationships between the factors and the type of

effects).

6. If parametric methods were used, state clearly how

basic assumptions were checked. This applies also to

multivariate methods.

7. If a transformation of data was used, it should be

stated what the transformation was and to which data

sets it was applied (if not to all data). When

logarithms were used, it should be clear whether they

were natural (ln) or to base 10 (log), or any other

base.

8. If problems with the basic assumptions can be

suspected and no correcting measures were taken,

reasons for this should be stated clearly.

9. With linear and non-linear regression, mention if

lack-of-fit has been checked and how.

10. Report how any missing data or outliers were treated

in the analysis.

11. When using GLIMs, state whether problems with

overdispersion were observed and how they were

accounted for.

12. When using exploratory multivariate methods such as

PCA, PCoA or cluster analysis, clearly state how data

were pre-processed and how (standardisation, trans-

formation).

13. When producing graphical plots, such as biplots for

PCA and similar techniques, explain exactly how

scores in the plot were scaled and which geometrical

interpretations are permissible in light of the scaling

used. Also make sure that principal axes are equally

scaled, for otherwise geometrical properties such

as distances and angles cannot be reasonably

interpreted.

Discussion of results

1. Avoid duplication of data in text and table or graph.

2. If you have to present a small amount of data,

consider including them in the text.

3. Use graphs to show trends: with more than three

levels a graphical representation will always convey

far more meaning than a tabular one.

4. Dispersion plots and �join the dots� can be used to

emphasise trends in the data.

5. Every estimate (in text, tables and graphs) should be

followed by a measure of variability (see later).

6. If curve fitting has been used, the observed means at

each level should always be shown along with the

regression line. In case of replicates, show only their

means.

7. Standard errors of the regression parameters should

be given, along with the equation. The value of R2 is

not essential where the predictor (x-axis) is an

experimentally controlled variable.

8. When using ANOVA on a factorial set of treatments,

the significance of interactions should be discussed

explicitly in the text; �main effects� should in general

only be examined if there are no significant interac-

tions.

9. Full ANOVA tables, showing residual mean squares,

variance ratios etc., are not normally required.

However, where analyses are complex and various

contrasts are embedded, it may be helpful for the

description of results to show the ANOVA table, but

giving only the degrees of freedom and probability

values.

10. Whenever MCP have been properly applied, letters

may be used to display significance of mean compar-

isons in tables or graphs, but they should not make

the table ⁄ graph less readable. Letters displays are

generated by most packages only when the design is

variance balanced, but there are procedures for

generating letters that work also for unbalanced data

(Piepho, 2004).

11. Do not allow discussion of which means do and do

not differ significantly to obscure the message being

conveyed. Limit statements about significance to

those which have a direct bearing on the aims of the

research.

12. If the objective of a study is to estimate the size of an

effect, then that estimate should be stated explicitly,

with confidence intervals, and not just that �the
difference was significant�, or non-significant, as the

case may be.

13. When regression analysis was used, base the discus-

sion on an overall consideration of the whole regres-

sion trend [e.g. �response to treatment increased with

application date, although further increases were

small after about 60 days after sowing’ (DAS)] and

not on pairwise comparisons of individual means (e.g.

�20 DAS was significantly greater than 40 and 60

DAS; 80 DAS differed (P £ 0.05) from 60 DAS, but

not from 20 DAS or 40 DAS�).
14. Arithmetic means in unbalanced factorial designs,

ANCOVAs or mixed models could be misleading and

should not be used when reporting results or com-

paring means. Instead, use least squares (or adjusted)

estimates of the means.
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Measures of data variability

We have already mentioned that the fundamental reason

for statistical analyses is that experimental and survey

data are variable. To describe these data adequately, it is

therefore necessary to present each estimated value

together with a measure of variability in text, tables or

graphs.

In the frequent case of normally distributed datasets,

the measure of variability should be either the standard

deviation (SD), or the standard error of the estimate (SE;

estimates include the mean, the regression coefficients,

etc.). Sometimes, other measures are reported, such as the

standard error of a difference (SED), the confidence

interval for means or the LSD. All those measures carry a

different meaning and they should be used appropriately,

according to the information that is necessary to convey.

Some suggestions may be given as follows.

1. Whatever measure you use, explicitly mention what it

is and, if at all possible, be consistent throughout the

paper.

2. Use the SD if you want to express the variability of a

cohort of measures, with respect to the mean. Within

these terms, the SD is purely a descriptive indicator.

3. Use the SE if you want to express the likely variability

of the estimates that could be obtained by repeatedly

collecting samples from the concerned population.

Within these terms, SEs are inferential indicators, and

they are definitely more important than SDs, if one

intends to express the general value of the results,

beyond the observed sample. On the other hand,

however, the SE is not a suitable measure of disper-

sion of individual observations, as it is always smaller

than the SD.

4. Use the SED, along with its number of degrees of

freedom, in the case of comparisons of an unstruc-

tured set of treatments in a balanced experiment.

When data are unbalanced (and thus the SED is not

unique), you can report a mean value for the SED,

together with some indication of the variability of

the pairwise SEDs, such as their minimum and

maximum.

5. The SED may be replaced by a critical difference

(always with degrees of freedom and number of

replicates); good choices are the LSD for CWE rate

and Tukey HSD for FWE rate.

6. Report the confidence interval to express a range of

possible values for some characteristic of a popula-

tion. In this case, the use of SE is inappropriate, as it

represents only a 68% confidence interval.

7. With non-normal data or when outliers are present,

the above indicators may be deceptive indexes of

variability. In these cases, more robust indicators

might be preferred, such as the median, instead of the

mean, the first and third quartile, instead of standard

deviation.

8. In a balanced design, the standard error of the means

for the different levels of the factor is constant

because it is assumed that the population variance is

also constant. Do not use the estimates of the SE

calculated within each level of the factor. For an

unbalanced design, the SE is obtained from the

corresponding error term and it is given by most of

the standard statistical computer packages.

Correct use of cut-off levels for P-values. How to deal

with (marginally) non-significant results?

Reporting cut-off levels may give rise to some errors (see

below), that should be avoided. It may be necessary to

recall that statistical tests are done relative to some pre-

determined cut-off level a and significance is determined

by looking at the real observed probability value P. If

the test is significant, the observed P is £ a (and not

P = a, which is nearly impossible), while if the test is

non-significant, the observed P is >a.
For the above reasons, wordings like: (i) differences

were significant at P = 0.05; (ii) no significant differ-

ences were detected (P = 0.05); (iii) the LSD was 13

(P £ 0.05), are all wrong and should not be used.

The situation becomes particularly tricky when the

observed P is little above a (e.g. P = 0.051). Indeed,

cut-off levels of confidence are purely arbitrary and

they are directly analogous to levels of �reasonable
doubt� in a court case. If a = 0.05, it is not very

logical to say that one effect is real because P = 0.049

and another is not real because P = 0.051. Such an

obsession with P values has been justly criticised by

Goodman (1999), who emphasises that statistical

significance should never be disjointed from biological

significance. Indeed, the latter is mainly concerned

with the real size of an effect: a large effect can be

statistically non-significant, but biologically relevant,

while a small effect may be statistically significant, but

biologically uninteresting. Further references on this

topic include Hilborn and Mangel (1997) and the

website: http://www.tufts.edu/�gdallal/LHSP.HTM.

As a consequence, there may be some situations that

require an adequate amount of caution. Whenever a

statistical test is not significant compared with an

arbitrary cut-off level, three things may be happening

in reality: (i) there is no effect; (ii) there is a small effect,

which cannot be distinguished from background noise;

(iii) there is a big effect, but background noise is also

very big. This latter aspect is particularly interesting in

some biological disciplines, where the variability of data
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is intrinsically very high. Some advice can be given to

deal with the above situations.

1. The cut-off levels of 0.05, 0.01 and 0.001 are

conventionally used and accepted, but there is no

logical reason why a cut-off probability level of 10%

(P = 0.1) should not be used, whenever a lower

degree of protection is needed to support a biologi-

cally relevant effect.

2. Report a precise P-value. This conveys far more

information and permits the reader to reach his ⁄her
individual conclusions: reporting P = 0.053 or 0.53

instead of �NS�makes a great difference (Marini, 1999).

3. Report the effect size together with confidence inter-

vals; this may help readers to assess the biological

relevance of an effect, beyond its statistical signifi-

cance (Colegrave & Ruxton, 2003).

In any case, it is preferable to conclude that �a
difference could not be detected� rather than that �there
was no effect�. This was nicely put in a paper by Altman

and Bland (1995) who expressed concern about the

consequences of considering the �absence of evidence� as
an �evidence of absence�, when issues of public health are

concerned. In weed science, such an issue is very relevant

to recent research on genetically modified herbicide-

tolerant crops (Perry et al., 2003).

Presenting transformed data

Unfortunately, when data have been transformed, the

presentation of results can become messy. This is

unfortunate, but we must not allow statistical rigour to

be disregarded in favour of convenience. For example, it

is not acceptable to state that analyses were performed

on transformed data, but then present means and SE of

non-transformed data �for clarity�.
The main problem with transformed data stems from

the fact that the measure of variability cannot be easily

back-transformed. Possible approaches to this problem

(each with advantages and drawbacks) may be:

1. Present only back-transformed means and back-

transformed measures of variability, via the delta-

method (Weisberg, 2005). This is the clearest

approach, as both means and measures of variability

are given in their original measurement unit, even

though not all the statistical packages make the delta-

method readily available. One should not forget that

naively back-transformed means predict medians, not

�means� in the sense of expected values, which is not a

disadvantage, however. Indeed, medians make more

sense than means as measures of central tendency, in

case of skewed (non-normal) data, which is almost

always the case if a transformation has been found

necessary to achieve normality.

2. Present only back-transformed means, but with letters

to indicate the results of the significance test on the

transformed data. This is certainly easier than using

the delta-method, but the consequence is that no

explicit measure of variability is given to the reader.

3. Present only the transformed means with their mea-

sure of variability. The drawback here is that their

magnitudes will be meaningless to the reader.

4. In tables, present transformed means in parentheses

alongside their back-transformed values, with the

variability of the transformed data underneath (again

in parentheses). The drawback is that this may result

in an excessively cluttered table. However, cluttering

can often be minimised by reducing the amount of

uninformative data being presented (authors often

tend to present all their data, rather than just those

directly relevant to their objective), or by having a

greater number of smaller tables.

5. In figures, means can be shown on transformed axes,

but with the axes labelled according to back-trans-

formed values. For example, the �tick marks� on a

log10-transformed axis can be shown as 0.1, 1, 10, 100,

1000, etc. The SE of the transformed data can then be

depicted by a single error bar.

Final remarks

The references that we refer to are of course but a small

sample of an extensive literature. As well as regularly

scanning Weed Research we also encourage readers to

browse both old and new statistics books.

One of the biggest concerns in writing statistical

guidelines is that they may be interpreted too literally,

which may prevent some good research from being

successfully published. Therefore, we would like to

reinforce the idea that statistical methods are not a set of

recipes whose mindless application is required by

convention; each experiment or study may involve

subtleties that guidelines cannot cover. Scientists and

editors are therefore warned: suggestions should not be

taken as fixed rules!

The only two rules that we can reasonably give in a

fairly prescriptive manner are the following:

1. State clearly the objective of the experiment. The

choice of statistical methods depends always on the

aims, which should be stated very early (preferably at

the end of Introduction). All design, analysis and

interpretation should then flow on logically from this

point.

2. If in doubt, consult a biometrician. For weed scientists,

statistical training may not be at the same level as

biological, chemical or agricultural training. If you

are even slightly unsure about a statistical design,

22 A Onofri et al.

� 2010 The Authors

Journal Compilation � 2010 European Weed Research Society Weed Research 50, 5–24



method or about the way in which a result has been

interpreted, consult a biometrician.

With respect to this latter point, we must say, from

experience, that too often a biometrician is consulted

only at the moment of data analysis. Statistical help at

this late stage does not necessarily guarantee the

statistical validity of the paper. Indeed, a biometrician

might help also in designing the experiment and also

during the writing process, to make sure that methods

are properly described and conclusions are supported by

the data (Fenlon, 1995). Apart from the above rules, do

not let common sense and clear thinking be replaced by

the rigid application of statistical orthodoxy.
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